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In this paper a new time-frequency transform based on the constant-Q transform, named as 
adaptive quality frequency transform (AQFT), is proposed. The AQFT is a non-uniform 
transform with logarithmically spaced center frequencies. The CQT offers a computational 
disadvantage due to the large number of samples needed to assure the quality and the desired 
resolution at the lower frequency range. The AQFT addresses this problem precisely and limits 
the number of samples required by a comparable frequency division. Finally, computer 
simulations are provided to illustrate the performance of the proposed algorithm. According to 
the simulation results, the accuracy and the processing time of the AQFT and of traditional 
time-frequency analysis methods such as the Fast Fourier Transform (FFT), the Signal Derivate 
FFT (SD-FFT) and the wavelet packet transform (WPT) are contrasted. 

0 INTRODUCTION 

The sinusoidal transform and time-frequency 
representation play an increasingly important role in the 
field of signal processing. The sinusoidal transform 
provides a way of representing an audio signal as a sum of 
sinusoids. This procedure is of great importance for some 
applications in the field of audio coding or modeling. 
Audio coding for cochlea implants, automatic speech 
recognition, music information retrieval are examples of 
current research areas. 

Ideally, a sinusoidal transform should represent the 
sound information in a manner that reflects human 
perception. In human hearing the frequency scale is 
compressed in a logarithmic way. At low frequencies 
about 500 Hz, the relation between physical differences in 
frequency and perceived differences is roughly linear. 
Above that point, it is approximately logarithmic [1]. The 
estimation of human frequency resolution is a result of 
studies of masking. 

Various transforms are currently being used. The best 
known and most used transform is the fast fourier 
transform (FFT). It is a known fact that the FFT-based 
estimation have good accuracy for harmonics if the signal 
is stationary.  

However, the FFT has some serious drawbacks. The 
analysis results in a linear frequency scale with a constant 
frequency resolution, which does not reflect human 
hearing. These differences between the FFT and the 

psychoacoustic requirements cause e.g. in 
coding/decoding or transmission quality restrictions. Then 
there is the loss of time information in transforming to the 
frequency domain. Using the FFT as time-frequency 
representation, it is impossible to find out when a 
particular event has taken place. This information may not 
be very important for stationary signals. However, for 
signals with no stationary or transitory characteristics FFT 
is not suitable.  

Enhancements in using FFT under consideration of the 
time resolution represents the Short Time Fourier 
Transform (STFT). The STFT analyses a small section of 
the signal at a time. One particular size of the time window 
is selected for all the frequencies. The subdivision of the 
signal in this way essentially ignores the effect of 
interferers-nearby sinusoids whose sidelobes may tilt 
magnitude spectrum peaks slightly so that they no longer 
correspond exactly to sinusoidal components [2]. The 
mentioned problems of the constant resolution in the FFT 
spectrum, the poor temporal resolution of the STFT and 
the associated risk of the peaks overlapping in the STFT 
spectrum, restrict the flexibility of these transforms. An 
approach to enhance the accuracy of sinusoidal parameter 
estimation in STFT spectrum is proposed in [2]. To 
minimize the problem of the tradeoff of time versus 
frequency in the FFT, a new method for high precision 
fourier analysis of sounds using signal derivates (SD-FFT) 
is proposed in [3] and [4]. This method improves the 
precision of the fourier analysis not only in frequency and 
amplitude but also in time resolution. The idea of SD-FFT 
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thus provides a compromise between time domain and 
frequency resolution.  

When applied to audio or speech signals, these 
transforms remain unfavorable. The reason for this is, on 
the one hand, that speech and music signals concentrate 
most of their energy in the mid-lower part of the spectrum, 
and therefore ovelaps are more likely to occur in this area. 
On the other hand, musical notes follow a logarithmic 
frequency relationship that does not correspond with the 
linearly spaced subbands of a STFT spectrogram. Notes in 
the lower range often fall into the same subbands and will 
thus overlap. [5] 

To overcome this, transforms with high frequency 
resolution for low frequencies and high time resolution for 
high frequencies are favored. The constant Quality 
Transform (CQT) proposed by C.J. Brown in 1991 [6] 
addresses the problem of the constant resolution of the 
FFT. The goal of the CQT is to transform a signal so that 
the spectrum has a logarithmic frequency resolution. 
Unlike the STFT, the CQT provides a varying time-
frequency resolution. This results in a high spectral 
resolution at low frequencies and high temporal resolution 
at high frequencies [7]. From this point of view, the CQT 
would be more suitable for music and speech signals.  

Computationally, the CQT is expensive as compared 
with the FFT or the STFT [7]. For performance reasons, 
Nisar et al proposed in [7] an adaptive method that 
provides a framework of switching between STFT for 
narrow band and CQT for wide-band signals, after 
analyzing the input signal. Numerous authors have 
contributed to a more efficient CQT calculation [8, 9]. 
Schörkhuber et al proposed in [9] a computationally 
inexpensive FFT based CQT analyzer.  

Initially, an exact inverse transformation was missing 
for CQT. In view of the reconstruction methods proposed 
in [10], [11], [12], CQT has the potential to be more 
suitable than FFT for applications in music signal 
processing.  

The CQT requires a large number of samples for the 
analysis in the low frequency range, so that the time 
resolution is suboptimal. In this paper a modified CQT is 
proposed with a limitation of the window lengths and an 
adjustment of the quality for different frequency ranges.  

The spectral division of the CQT has a similarity with 
the wavelet transform. The wavelet transform presents an 
approach, which satisfies the requirements of more 
flexibility by varying the window size to determine either 
time or frequency more accurately [13]. Similar to the 
CQT, the wavelet analysis allows the use of long time 
intervals for more precise low-frequency information and 
shorter time intervals where high-frequency information is 
required 

Wavelet transform is a time-frequency representation of 
any stationary or non-stationary waveform. It measures 
similarity between the original waveform and basic 
function of wavelet transform known as mother wavelet 
through wavelet coefficients [14]. Wavelet transform can 

preserve both time and frequency information without any 
effect on resolution [14]. It has been suggested that 
wavelets are particularly good at modeling the frequency 
response of the human auditory system [15].  

Wavelet Packet Transform (WPT) is favored over other 
forms of transform i.e. discrete Wavelet transform (DWT) 
because it provides uniform frequency bands and offers 
flexible decomposition through merging splitting process 
of the nodes. Also it be considered as a generalization of 
wavelet transform [16]. 

For evaluation purpose, the performance of the here 
proposed method and the WPT are compared 

This paper is organized as follows: section 1 gives an 
overview of the theory of CQT and its relationship to FFT 
and derives the new method, here named the adaptive 
quality frequency transform (AQFT). The transforms used 
for the later comparison with the AQFT are explained in 
section 2 (SDFFT) and 3 (WPT). Finally, we make a 
comparison of these methods in section 4 using synthetic 
signals and we discuss the results. Section 5 concludes 
with a brief summary. 

1 THE CONSTANT QUALITY TRANSFORM AND THE 
ADAPTIVE QUALITY FREQUENCY TRANSFORM 

The constant-Q transform is related to the discrete 
fourier transform and very closely related to the complex 
Morlet Wavelet transform.  

The DFT 𝑋 𝑘  of a discrete time domain signal 𝑥 𝑛  
is defined as: 

𝑋 𝑘 𝑤 𝑛 ∙ 𝑥 𝑛 ∙ 𝑒  (1) 

where n and k are the time and frequency parameters 
respectively and 𝑤 𝑛 ,  is a normalized analysis 
window. 
N represents the DFT-length. 
The spectral resolution ∆𝑓 of the DFT is defined as 
follows: 

∆𝑓
𝑓
𝑁

 (2) 

𝑓  is the sampling frequency of the signal.  

The center frequencies 𝑓 𝑘 ∙ ∆𝑓 with 𝑘 ∈ 0,1,⋯ ,𝑁
1  are distributed uniformly since ∆𝑓 is constant for all 
frequencies. So the DFT can be considered as a filter bank 
with equal spaced center frequencies 𝑓 .  

The DFT can also be formulated depending on 𝑓 . 

𝑋 𝑘 𝑤 𝑛 ∙ 𝑥 𝑛 ∙ 𝑒
∙

 (3) 

If we analyze music signals, it is important to look at 
the frequency distribution. Musical notes exhibit an 

exponential frequency distribution 𝑓 𝑓 ∙ 2 , where 𝑓  
denotes the lower bound of frequencies to be considered. 
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For 𝑏  12 we obtain twelve frequency bins per octave 
corresponding to the western musical scale of twelve 
semitones per octave. For b ∈ {24, 36, ...} an even higher 
resolution than semitone resolution can be achieved which 
is beneficial if music instruments are not perfectly tuned 
[10]. There is a similar distribution of the spectral 
components for speech signals, which could be regarded 
as a subset of music [17]. 

For music and speech, a time-frequency representation 
with geometrically spaced frequency bins, such as the 
CQT, is more suitable. The CQT can be seen as a filter 
bank with logarithmically spaced center frequencies 𝑓 . 
The bandwidth 𝛥  of the k-th filter is a multiple of the 
width of the previous filter. 

𝛥 𝛥 ∙ 2  (4) 

𝑏 denotes the number of bins (or filters) per octave. b is the 
most important parameter of choice when using the CQT, 
because it determines the time-frequency resolution trade-
off of the CQT. 

The center frequency 𝑓  of the 𝑘-th filter can be calculated 
using the base frequency 𝑓  (the center frequency of the 
lowest filter)  

𝑓 𝑓 ∙ 2 ;   𝑘 0,⋯ ,𝐾 1  (5) 

where K determines the overall number of frequency bins 
(the total number of filters).  

𝐾 𝑏 ∙ 𝑙𝑜𝑔
𝑓
𝑓

   (6) 

𝑓  is the maximum frequency in the spectrum. 𝑓  and 
𝑓  must be specified beforehand.  
The factor 𝑄 that gives this transform its name represents 
the quotient between the center frequency and the 
bandwidth of the filter [18]. 

𝑄
  

, (7) 

The quality factor Q for all filters is constant.  

Through this distribution of filters, the transform has a 
finer frequency resolution in lower frequency range. By an 
appropriate choice for 𝑓  and 𝑏 the center frequencies of 
the filters correspond directly to musical notes. Therefore 
this transformation is well suited for the processing of 
instrumental music, hence the different notes are spaced 
like the filters in the CQT with 𝑏  12 bins per octave or 
a factor 𝑄   16.82. [6]  

In order to achieve a frequency-dependent resolution, the 
window length therefore has to be chosen in accordance to 

the analyzed frequency. The desired bandwidth 𝛥
 
 

can be realized by choosing a window of length 𝑁  [10]. 

𝑁 𝑄 , (8) 

As the factor Q and the sampling frequency 𝑓  are constant, 
the length of the window varies with 𝑓 . The correlation 
between the frequency 𝑓  and the window length 𝑁  for 
different values of Q is shown in Fig. 1. 

 
Fig. 1: CQT Window length 𝑁  as a function of 𝑓  for different 
quality factors 

The factor Q is also similar to the number of cycle 

durations 𝑇  in each window. The distance ∆  

between consecutive frequencies 𝑓  and 𝑓  is crucial for 
the analysis of a signal. Using the CQT as transform ∆  
increases with the frequency while Q remains constant.  

Fig. 2 shows the values of ∆  for different CQTs indicated 
with different parameters b. For comparison, the resolution 
of the FFT is entered for different lengths 𝑁 (1024, 2048 
and 2048). The used sampling frequency is 44,1 𝑘𝐻𝑧 and 
the base frequency 𝑓  for the CQT is 20 𝐻𝑧. The CQT with 
𝑏 96 maintains a better resolution than the 4096-FFT up 
to 6 𝑘𝐻𝑧. 

 
Fig. 2: Distance between adjacent frequency bins in FFT and 
CQT, 𝑓 44,1 𝑘𝐻𝑧, 𝑓 20 𝐻𝑧 

The constant Q transform 𝑋  𝑘  of a discrete time-
domain signal 𝑥 𝑛  can be derived from the DFT 
definition in eq. (3) as follows 

𝑋  𝑘 ∑ 𝑤 𝑛 ∙ 𝑥 𝑛 ∙ 𝑒
∙ ∙ ∙

  (9) 

Where 𝑘 0,⋯ ,𝐾 1 indexes the frequency bins of the 
CQT and 𝑤 𝑛  denotes a normalized window function 
with the length 𝑁 . 

Considering equation (8), the constant Q transform 
𝑋  𝑘  can also be evaluated by [6] 
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𝑋  𝑘 ∑ 𝑤 𝑛 ∙ 𝑥 𝑛 ∙ 𝑒
∙ ∙ ∙

  (10) 

In contrast to the FFT, the window length 𝑁  depends 
on the frequency and is not constant. The relationship is 
described in equation (8). For the base frequency 𝑓 , the 
largest number of samples is required. 

Example: 

We consider an audio signal sampled at 𝑓 44,1 𝑘𝐻𝑧. 
For the CQT we choose 𝑏 12 and 𝑓 20 𝐻𝑧. The 
quality factor 𝑄 as defined in eq. (7) corresponds to 
approximately 16,82. The window length 𝑁  required for 
the base frequency 𝑓  is 𝑁 37082 samples 
corresponding to 841 𝑚𝑠 of the audio signal. This signal 
duration required for the analysis of the lower frequency 
range is not suitable for real time applications. It should be 
noted here that 𝑏 12 represents the smallest value for the 
CQT. If the next level 𝑏 48 is set, a signal duration of 
3437, 5 𝑚𝑠 is required.  

Concerning the computational complexity, the CQT is 
expensive as compared to the FFT. This is one of the 
reasons of the unpopularity of this transform, which is 
partially mitigated by the increased computational 
computing capacity of modern computers [19]. The 
asymptotic complexity for the FFT is ℴ 𝑁 ∙ 𝑙𝑜𝑔 𝑁 , 
where N is the window length of the input signal. The 
asymptotic complexity of the CQT following eq. (10) is 
ℴ 𝑁 ∙ 𝑙𝑜𝑔 𝑁 𝑁 ∙ 𝐾 𝐾 , where K represents the 
number of filters [7]. 

Because of the large frame length needed for the resolution 
in lower frequencies, the CQT as defined above is not 
really suitable for real time applications.  

The method proposed in this paper, the Adaptive 
Quality Frequency Transform (AQFT), limits the window 
length used for the transform and keeps the logarithmic 
frequency resolution. The quality factor is adapted to the 
new length so that the resulting new resolution hardly 
differs from the CQT frequency division. The time 
frequency representation is still based on the CQT 
calculation. Thus, the transform is on the one hand suited 
for real time applications, because it uses a limited number 
of samples and on the other hand resembles the frequency 
resolution of the human ear.  

The AQFT algorithm should have several goals: 

 reduction of the computational complexity 
 controllability of the time resolution for different 

frequencies 
 to keep the deviation from the CQT frequencies low 
 controllability of the quality 
 compliance with given block lengths 

To achieve this some parameter settings are used. The 
different steps of parameter setting of the proposed 
transform are illustrated in Fig. 3. 
 

 
Fig. 3: Steps to determine the parameters of the AQFT 

(1) In the beginning, similar to the CQT, the lowest 
frequency 𝑓 𝑓 , the highest frequency 𝑓  and 
the number of frequency bins per octave 𝑏 are 
specified. Further a maximum window length 𝑁  is 
defined. 

(2) The total number of frequency bins 𝐾 (eq. (6)), the 
discrete frequencies 𝑓⃗ (eq. (5)) and the quality factor 
Q (eq. (7)) are calculated.  

(3) The different window lengths 𝑁⃗ are computed with 
equation (8). Since the window length describes the 
number of samples for the analysis, the values for 𝑁⃗ 
must be integer. Therefore the values are rounded off. 
Rounding errors arise that influence the quality factor 
𝑄 and the frequencies 𝑓⃗. The frequency deviation will 
be corrected later. 

(4) The window lengths given in 𝑁⃗ are compared with 

𝑁 . The smallest value is stored in 𝑁⃗. 𝑁⃗ is used 
for the transform. This step causes a reduction in 
quality for some frequencies. The term Constant-Q-
Transformation can therefore no longer be used.  
Fig. 4 shows the window lengths used for the CQT 
and for the AQFT a function of the frequency 𝑓 .  

 
Fig. 4: Window lengths of CQT and AQFT, 𝑏 24, 
 𝑓 20 𝐻𝑧, 𝑓 44,1 𝑘𝐻𝑧,𝑁 882 samples 

(5) In the next step, the reduced quality is determined so 
that the frequencies can be retained. Q is adapted to 
the new length for each frequency. This results in the 
quality vector 𝑄⃗. For each bin 𝑘 and each window 
length 𝑁 , the quality factor 𝑄  is computed as 
follows: 

𝑏, 𝑓 , 𝑓 ,𝑁  𝐾, 𝑓⃗,𝑄 𝑁⃗, 
𝑁⃗ 𝑟𝑜𝑢𝑛𝑑 𝑁⃗  

(1) (2) (3) 

𝑁′⃗

𝑚𝑖𝑛 𝑁⃗,𝑁  

(4) 

𝑄⃗ 𝑄 ∙
𝑁′ ⃗

𝑁⃗
 

(5) 

𝑓′⃗ 𝑓 ∙
𝑄⃗

𝑁′ ⃗
 

(6) 
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      𝑄 𝑘 𝑄 ∙
𝑁 𝑘
𝑁 𝑘

 
(11) 

Eq. (11) guarantees that 𝑓⃗ remains unchanged except 
for small rounding errors.  

(6) The small deviations of the frequencies are 
determined and the frequencies 𝑓  have to be adjusted, 
so that the frequencies in the spectrum can be 

interpreted correctly. The new frequencies 𝑓⃗ are 

calculated for new window sizes 𝑁⃗ and new factors 

𝑄⃗. 

      𝑓⃗
𝑓 ∙ 𝑄⃗

𝑁⃗
 

(12) 

Fig. 5 shows the difference between the CQT and the 
AQFT frequencies for 𝑓 44,1 𝑘𝐻𝑧, 𝑏 24,𝑓
20 𝐻𝑧, 𝑓 , and 𝑁 882 samples (≅ 20𝑚𝑠).  

The frequencies of the AQFT differ slightly from those of 
the CQT (gray line). The characteristic division of the 
frequencies is retained. In this example 𝑁  corresponds 
to 20 ms of the sampled signal. To ensure comparability 
during the later examination, we have set a block length of 
a maximum of 20 ms for all transforms.  

The difference between the frequency resolution of the 
AQFT and the CQT resolution ∆   remains small.  

 
Fig. 5: AQFT vs CQT frequencies; 𝑓 44,1 𝑘𝐻𝑧, 𝑏 24,𝑓
20 𝐻𝑧;  𝑓 ,𝑁 882 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 20𝑚𝑠  

Equation (10) can still be used to transform the signal 
using the adapted parameters for each frequency. Since the 
quality factor is no longer constant but is adapted to the 
length chosen for each frequency, the resulting transform 
is called Adaptive Quality Frequency Transform (AQFT). 

For effective implementation, we realized the AQFT 
with a matrix multiplication. Based on eq. (10), a matrix 
𝐴𝑄𝐹𝑇 𝑘,𝑛  is defined as follows: 

𝐴𝑄𝐹𝑇 𝑘,𝑛 𝑤 𝑘,𝑛 𝑒
∙ ∙ ∙

 (13) 

where 𝑘 0,⋯ ,𝐾 1 indexes the frequency bins of the 
CQT and 𝑛 0,⋯ ,𝑁 𝑘 1 the time index. The 
corresponding Matrix is initialized before the analysis is 
carried out. That makes the AQFT much more time 
efficient, since only a matrix multiplication for the analysis 
has to be carried out (see eq. (14)) 

𝑋 𝑘  𝐴𝑄𝐹𝑇 𝑘,𝑛 ∙ 𝑥 𝑛  (14) 

Since the window length becomes smaller as the value 𝑘 
increases, some values in these rows of the matrix are zero. 

2 THE SIGNAL DERIVATE FFT  

The signal derivate FFT (SD-FFT) is a method for high 
precision fourier analysis of audio signals using signal 
derivate (SD). This method, proposed in [3] and [4] 
improves the precision of the power analysis not only in 
frequency and amplitude but also in time, thus minimizing 
the problem of the tradeoff of time versus frequency as 
known with the classical FFT [20]. 

An improvement of the SD-FFT algorithm used for 
packet loss recovery in audio signals, is presented in [20]. 
In addition to the modification of peak picking, a 
combined FFT/SD-FFT algorithm, depending on the 
location of the found peaks is introduced. In the present 
contribution, the SD-FFT is conducted based on the 
algorithm in [20]. In the following the different steps of the 
frequency analysis with SD-FFT: 

(1) The FFT of the audio signal 𝑥 𝑛  and its derivate 
𝑥 𝑛  are computed (after windowing with hanning). 

(2) Peaks in the magnitude spectrum of 𝑥 𝑛  are detected. 
These peaks are considered to be relevant frequencies 
in the spectrum. 

(3) The amplitudes and frequencies of the SD spectrum 
are corrected as described in [4] and [3]. 

(4) The peak frequencies 𝑓  found in 𝑋 𝑘  are compared 
with the SD frequencies 𝑓 , . If the difference 
between the discrete frequencies (positions in the 
discrete FFT vector) exceeds one bin (corresponds to 
the frequency resolution ∆𝑓), the algorithm rejects the 
SD frequencies and takes the FFT frequencies 𝑓 , . 
after adjustment with parabolic regression. Because 
we are looking for local maxima in the spectrum, the 
position of a discrete frequency should not be more 
than one bin away from the peak. Otherwise, that 
would mean choosing a frequency with a smaller 
amplitude than the maximum. The exact frequency 
must in any case be close to the maximum.  

3 THE WAVELET PACKET TRANSFORM 

The general concept of the wavelet transformation is to 
divide the input signal into its highpass and lowpass 
components by scanning it with a so called mother wavelet 
function. An in depth introduction to wavelets can be 
found in [21]. This paper will use the Wavelet Packet 
Transform (WPT), which is a Discrete Wavelet Transform 
(DWT) with a linear instead of a logarithmic frequency 
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division. This can be achieved by decomposing the 
highpass (D, detail) channel of the signal in addition to the 
procedure for the lowpass (A, approximation) channel as 
it is done in a DWT. This results in the structure of a 
complete binary-tree throughout the levels of 
decomposition [21]. Fig. 6 shows such a tree with two 
levels. However, in most use-cases it is not necessary to 
construct the WPT as a complete binary-tree as it leads to 
more complexity. Therefore, decomposition of the 
highpass channel is often not fully decomposed to the level 
of the lowpass channel to achieve a good compromise 
between frequency resolution and complexity.  
 

 
Fig. 6: Wavelet Package Transform with two decomposition 
levels 

An example of an incomplete decomposition tree for usage 
in cochlea implants can be derived from Nogueira et al. 
[22]. 

To decompose the signal, a mother wavelet has to be 
chosen. Throughout the years, many different mother 
wavelets have been developed and MATLAB supports 
various wavelet families [23]. However, as WPT is a 
discrete transform complex wavelet functions cannot be 
used because they are only suitable for Continuous 
Wavelet Transforms (CWT). Nevertheless, this leaves 
quite a few options such as Daubechies, Symlet, Morlet 
and many more. The concept to find the best mother 
wavelet for a given case is by having the best similarity 
with the signal. Similarity can be defined under different 
aspects such as energy, entropy or redundancy. 
Redundancy is, at least for discrete wavelets, not a factor 
as they do not have any to be measured. Investigations on 
different wavelets for audio processing for music and 
speech (where speech could be regarded as a subset of 
music [17]) have often come to the conclusion that 
decisions about the chosen wavelet is more about 
exclusion of worse than picking one best wavelet function 
as results are quite similar for some “best” [17] and is very 
dependent on the actual use case [24]. 

In each level of decomposition, the signal is being 
convoluted with the corresponding filter coefficients of the 
mother wavelet. The length of this convolution 𝑛 is defined 
as the sum of the length of the input vector 𝑣 and the order 
of the filter 𝑜. As the following level is expecting an input 
vector with length of , 𝑛 has to be reduced to the length 

of 𝑣 before downsampling. The usage of a circular 
convolution can help out to avoid the need of such a 
reduction, as the result of the circular convolution of 𝑣 and 
𝑜 always has the length of 𝑣. Before continuing with the 

next decomposition level the signal has to be 
downsampled. 

The down sampling on each level of decomposition leads 
to an aliasing. Therefore, the frequency content of the 
combination of highpass and lowpass filter (AD) describes 
a higher frequency content than the combination of two 
highpass filters (DD). This forces a reordering process of 
the resulting wavelet coefficients by swapping AD and DD 
on each level [25]. In MATLAB this can be achieved by 
using otnodes [26]. The result is shown in Fig. 7.  

 
Fig. 7: Frequency ordering in the WPT 

After all decompositions have been made, Teager’s energy 
operator is used instead of ordinary energy of the leaf 
subband to interpret the result. This method for the use in 
DWT has been proposed by Guido in 2017 [27]. In each 
leaf subband 𝑏 the first and last element have to be squared 
[27]: 

𝑦 , ← 𝑦 , ² (15) 

For leaf subbands with at least two values the following 
operation has to be executed for any element from the 
second to the penultimate [27]: 

𝑦 , ← 𝑦 , 𝑦 , ⋅ 𝑦 ,  (16) 

As circular convolution is used to calculate the coefficients 
of each level the number of elements in each leaf subband 
𝑏 depends on the length of input data 𝑙  and the level 
of decomposition 𝑙𝑒𝑣𝑒𝑙  

𝑁𝑢𝑚𝑂𝑓𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠
𝑙

2
 (17) 

For example, with an input of size 1024 and 8 levels of 
decomposition the number of elements in each leaf 
subband is 4. 

The resulting coefficients can be used to determine the 
frequencies in the input signal. The accuracy (resolution in 
the last level) can be calculated by 

Δ𝑓
𝑓

2 ⋅ 2
 (18) 

for the terminal nodes. For 𝑓 16 𝑘𝐻𝑧 and a 
decomposition level of 8 this leads to Δ𝑓 31,25 𝐻𝑧. 

One of the problems concerning frequency detection with 
wavelet transformation seems to be the steepness of the 
wavelet filters. Fig. 8. shows the energy level for each filter 
of the first two levels of decomposition for a 1.625 kHz 
sine signal. Channel 1 and 2 show level 1, channel 3 to 6 
show level 2. Whilst the segmentation works quite well in 
level 1, it can be observed that in level 2 of decomposition 



  

 9 

a considerable amount of energy is detected in the 
frequency band of 2-4 kHz which is wrong in terms of 
frequency detection. As the energy is split up this leads to 
additional possible frequencies. Furthermore, this leads to 
a lower amplitude than expected from the original signal. 

 
Fig. 8: First two decomposition levels of ‘db16’ 

However, the image above has been taken with a high 
order mother wavelet ‘db16’ (Daubechies wavelet of order 
16). For lower orders e.g. the often used ‘db4’ the 
frequency response is even more flat. Fig. 9 shows the 
frequency segmentation of the first two decomposition 
levels with ‘db4’ of the same sine signal. 

 
Fig. 9: First two decomposition levels of ‘db4’ 

In this figure the energy is spread to all the different 
channels of decomposition because of the lack of steepness 
within the wavelet filter. As common mother wavelets 
such as Daubechies, Symlet or Meyer (even at higher 
orders) did not lead to a satisfying result the solution to this 
problem could be the design of a filter or mother wavelet 
that has enough steepness to determine the signal 
frequencies. A guideline to such a filter design can be 
found in [28]. 

Another problem is the low frequency resolution of 𝛥𝑓
31,25 Hz. It can be resolved by using a larger frame with 
a length of e.g. 8192 results in a resolution of Δ𝑓
1,95 𝐻𝑧. However, the total length of signal has to be 
providing such an extension of the frame by having enough 
samples. For real-time applications, this length cannot be 
provided. 

Finally, this current implementation of wavelet 
transformation with ‘db16’ and 9 decomposition levels 
does detect the right frequencies within the signal but with 
wrong amplitudes and additional frequency components. 

4 EXPERIMENTAL SETUP AND RESULTS 

In this section we will evaluate the performance of the 
proposed method presented in section I and compare the 

results with the FFT, SDFFT and PWT. To rate the 
analysis the frequency-weighted segmental SNR [30] 
(denoted here by fwSNR) is used, as it considers the 
frequency and the amplitude of the signal while mimicking 
the deafness to the phase of the human ear [29]. The 
processing time required for the transforms mentioned is 
also compared.  

For simulation purpose synthetic files were used. They 
were created at sampling rates of 16 𝑘𝐻𝑧 and 44,1 𝑘𝐻𝑧 
and a duration of 300 ms. The frequency components are 
located in the first three formants of the human voice [29]. 
In the first part of the simulation all frequency components 
are static without any change over the duration of the file. 
In the second part every frequency component lasts 
between 10 and 50 ms and shifts in amplitude as well as in 
frequency value to further emulate the human voice. Fig. 
10 and Fig. 11 show respectively spectrograms of a static 
signal and a dynamic signal. 

 
Fig. 10: Spectrogram of a static signal 

 
Fig. 11: Spectrogram of a dynamic signal 

The investigated transforms are implemented with 
blocks of 20 ms, which corresponds to 320  samples of 
16 𝑘𝐻𝑧 signals and 882 samples of 44,1 𝑘𝐻𝑧 signals. This 
block length complies in the area of audio signal 
processing the limits of quasi-stationarity and real-time 
usability. The result of every analysis is further used to 
create a spectrogram as shown in the previous figures. Fig. 
12 shows an example of the spectrogram created from the 
results of the FFT analysis, of the sound file from Fig. 11. 
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Fig. 12: Spectrogram of a dynamic signal reconstructed from 
the results of the FFT 

Based on the spectrograms generated from the results of 
the analysis, new audio files are synthesized to evaluate the 
similarity to the original sound file. To rate the analysis 
fwSNR is used. 

The computations were carried out in MATLAB 
Simulink on an Intel® Core™ i7-6700HQ CPU at 
@2.60GHz. The results for 500 static files sampled at 
16 𝑘𝐻𝑧 are shown in table I and Fig. 13. Table II and Fig. 
14 show the results for 500 16 𝑘𝐻𝑧 dynamic files. 

Table I Simulation results for 500 static files. 𝑁  320 
samples, 𝑓 16 𝑘𝐻𝑧 

Transform Processing time 
per frame in 

fwSNR in 𝑑𝐵 

FFT 5.313 17.29 

SDFFT 3.646 28.96 

AQFT (b=24) 2.734 21.97 

AQFT (b=48) 3.006 27.12 

AQFT (b=96) 3.383 31.79 

Wavelet 202.146 -8.911 

Fig. 13: Results for 500 static files; 𝑓 16 𝑘𝐻𝑧 

Table II Simulation results for 500 dynamic files. 𝑁  320 
samples, 𝑓 16 𝑘𝐻𝑧 

Transform Processing time 
per frame in 𝑚𝑠 

fwSNR 
in 𝑑𝐵 

FFT 8.594 8.672 

SDFFT 4.818 10.01 

AQFT (b=24) 4.75 9.497 

AQFT (b=48) 5.078 9.797 

AQFT (b=96) 5.339 10.22 

Wavelet 219.5 6.892 

 
Fig. 14: Results for 500 dynamic files, 𝑓 16 𝑘𝐻𝑧 

Table III and Fig. 15 show the simulation results for 
44,1 𝑘𝐻𝑧 static signals. The results for 44,1 𝑘𝐻𝑧 dynamic 
signals are illustrated in table IV and Fig. 16. 

Table III Simulation results for 44,1 𝑘𝐻𝑧 static files. 𝑁  882 
samples 

Transform Processing time 
per frame in 𝑚𝑠 

fwSNR 
in 𝑑𝐵 

FFT 6,66 8,53 

SDFFT 3,85 12,93 

AQFT (b=24) 5,62 14,63 

AQFT (b=48) 6,14 15,73 

AQFT (b=96) 8,12 16,45 

Wavelet 365,3 2,35 
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Fig. 15: Results for 44,1 𝑘𝐻𝑧 static files; N = 882 samples 

Table IV Simulation results for 44,1 𝑘𝐻𝑧 dynamic files. 
𝑁  882 samples 

Transform Processing time 
per frame in 𝑚𝑠 

fwSNR 
in 𝑑𝐵 

FFT 6,87 5,79 
SDFFT 4,48 7,45 

AQFT (b=24) 5 9,49 

AQFT (b=48) 6,25 10,41 

AQFT (b=96) 6,6 10,5 

Wavelet 374,16 4,8 

 
Fig. 16: Results for 44,1 𝑘𝐻𝑧 dynamic files; N = 882 samples 

The results of these investigations are discussed in 
section 5. 

In addition, we examined the error rate in the detection 
of frequencies in the implemented procedures. A time-
frequency transform can detect frequencies that were not 
present in the original signal. We implemented this 
investigation exclusively for static signals. Fig. 17 shows 
representatively the results for 500 static signals. The 
values shown describe the mean value over 500 files. For 
example, with the FFT, a maximum of 13 frequencies in 
the range from 2413.6 to 9394 Hz were incorrectly 

detected. These frequencies are not part of the original 
signal. Incorrectly detected frequencies were only 
registered with FFT and Wavelet. The error rate increases 
for higher frequencies. FFT and WPT have a constant 
frequency resolution. The number of frequencies in the 
high frequency range is for the human ear unnecessarily 
high. The probability of wrong detection is therefore 
higher. With SDFFT, which also has a linear frequency 
axis, no false frequencies are detected. Only a small 
frequency and amplitude deviation between original and 
detected is possible. This is due to the optimizations in the 
peak-picking algorithm. Due to the logarithmic division of 
the frequency axis with the AQFT, the probability of false 
detection remains zero. 

 
Fig. 17: Incorrectly detected frequencies averaged over 500 
static signals. 

In the next investigation, we generated a synthetic 
signal with a frequency division according to the Bark 
scale. The aim of this investigation is to see how the AQFT 
behave in the low frequency range compared to FFT, 
SDFT and PWT. The synthetic signal has a small 
resolution in the lower frequency range. An overlap of the 
main lobes in the spectrum is likely. This makes frequency 
detection based on peak detection more difficult and 
inaccurate. 

Fig. 18 shows an extract for detected frequencies for a 
synthetic signal with Bark frequency division. The 
representation is limited to the lower frequency range in 
order to illustrate the effect of the overlapping of the main 
peaks. 

 
Fig. 18: Detected frequencies for a synthetic signal with Bark 
frequency division. 
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The advantage of the AQFT over other transformations is 
clear. Almost all frequencies are detected here. In contrast 
to the DFT spectrum, peaks close to the original 
frequencies can be seen in the AQFT spectrum  

The quality assessed with fwSNR shows a clear advantage 
of the AQFT, especially the AQFT96, compared to the 
other transforms (see Fig. 19). Concerning the processing 
time, AQFT gets the best results. 

 
Fig. 19: Results for synthetic file with Bark frequency division. 
𝑓 44,1 𝑘𝐻𝑧;𝑁 882 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

5 DISCUSSION AND CONCLUSIONS 

The evaluation of the results achieved in section 4 and 
a comparison of the processing time and quality of the 
AQFT and the examined transforms show a significant 
advantage of the AQFT. 

The FFT does not provide the best quality for static as 
well as dynamic signals and is also not the fastest 
transformation. It should be noted here that the standard 
methods of peak picking and parabolic regression are used 
for the FFT calculation. The implementation of the SDFFT 
method according to [20] is based on much better routines 
for determining the valid frequencies. With both static and 
dynamic signals, the SDFFT proves to be faster and better 
in quality than the classic FFT. The SDFFT algorithm 
performs two FFTs per Block, for the signal and for the 
first derivate. Nevertheless, the processing time of 3.6 ms 
per 20 ms block for static signals and 4.8 ms for dynamic 
signals (𝑓 16 𝑘𝐻𝑧) is acceptable. 44,1 𝑘𝐻𝑧 signals 
show similar results. 

The required processing time by the PWT is far too 
long compared to other transforms as we are performing a 
full binary tree wavelet transform. PWT delivers the worst 
results in comparison with the other transforms in terms of 
processing time and fwSNR values. This is due to the 
problems discussed in chapter 3.  

Basically, it can be stated that the results of the AQFT 
and the comparison to other transforms show a similar 
trend for static and dynamic signals, and for 16 𝑘𝐻𝑧 and 
44,1 𝑘𝐻𝑧 signals. The measured fwSNR values are worse 
with dynamic than with static signals. This is due to the 
synthesis of the signals on the basis of the spectrograms, 
which contain frequency jumps. 

With an increase in resolution, the processing time of 
the AQFT rises (Fig. 13 - Fig. 16), as more discrete 
frequencies are to be considered. The processing time of 
the AQFT increases proportionally to the selected start 
quality factor and thus to the complexity of the algorithm. 
A higher resolution, as realized by AQF96 (b = 96) 
delivers the best results (fwSNR) for static and dynamic 
signals and provides a better basis for signal recreation. As 
a reminder, b describes the number of filters or bins per 
octave. The processing time required by 16 𝑘𝐻𝑧 signals is 
between 3 ms (static) and 5.5 ms (dynamic) per 20 ms 
block and thus about 3 ms faster than the FFT. The 
processing time of the AQFT remains comparable or 
slightly worse than the SDFFT. This also applies to 
44.1 𝑘𝐻𝑧 signals.  

The Bark signal evaluated in Fig. 19 contains 24 
frequencies in each segment, relatively more than the rest 
of the signals. This leads to a relatively high processing 
time of approx. 20 ms per 20 ms block.  

In the point of view of the accuracy, the AQFT96 
reaches the highest fwSNR values for static and dynamic 
files both for 16 𝑘𝐻𝑧 and 44,1 𝑘𝐻𝑧 signals. Concerning 
processing time, we see potential for optimization. For the 
analysis of audio and speech, a hybrid transformation with 
different b-factors can produce qualitatively similar results 
with a smaller processing effort. AQFT24 can be sufficient 
in the high frequency range, with b=96 being selected in 
the low frequency range up to 4 𝑘𝐻𝑧. 

An examination of the incorrectly determined 
frequencies has also shown that probability of detecting 
wrong frequencies is 0% for both AQFT and SDFFT. Only 
the amplitude and frequency have a small deviation from 
the original signal. However, with SDFT it can happen that 
frequencies cannot be recognized because the peaks in the 
spectrum are missing due to overlapping. This effect was 
not observed with AQFT (Fig. 18) 

For the transforms to be used in real-time application, 
the computing hardware and the type of signal to be 
transformed must be taken into account. If the main 
purpose is to transform a human speech signal, the AQFT 
is considered to be the best option as it produces the 
highest fwSNR value. The computation time as well as the 
quality are adjustable via the factor b. 
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7 NOMENCLATURE 

 FFT = Fast Fourier Transform 
 STFT = Short Time Fourier Transform 
 SDFFT = Signal Derivate FFT 
 CQT = Constant Quality Transform 
 AQFT = Adaptive Quality Fourier Transform 
 DWT = Discrete Wavelet Transform 
 PWT = Packet Wavelet Transform 
 fwSNR = Frequency-weighted Signal to Noise Ratio 
 
 
 
 


