Potenzialanalyse adiabater Kühlung in den Krankenhäusern

Bachelorarbeit

von: Sining Zhang

Ma.Nr. 70478532

ingereicht am: 24.06.2022

Erstprüfer: Prof. Dr. Ing. Lars Kühl
Zweitprüfer: Prof. Dr. Ing. Benno Lendt
Erklärungsbericht

Hiermit erkläre ich die folgende Bachelorarbeit mit dem Thema Potenzialanalyse adiabater Kühlung in den Krankenhäusern selbst angefertigt zu haben und hierbei nur die angegebenen Quellen und Hilfsmittel benutzt zu haben.

<table>
<thead>
<tr>
<th>Name</th>
<th>Vorname</th>
<th>Matrikelnummer</th>
<th>Unterschrift</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhang</td>
<td>Sining</td>
<td>70478532</td>
<td>Sining Zhang</td>
</tr>
</tbody>
</table>
Danksagung

Ich möchte mich als erstes bei all denjenigen bedanken, die mich während des Studiums begleitet und unterstützt haben.

Zweitens möchte ich mich bei meinem Zweitprüfer, Herrn Prof. Dr. -Ing Benno Lendt, bedanken, der auch der für die Austauschstudenten der Tongji-Universität zuständige Professor ist. Herr Lendt hat mich zu Beginn an der Ostfalia sehr betreut und unterstützt.

Ich möchte mich auch bei all meinen Freunden in Deutschland für ihre Begleitung und Unterstützung bedanken und wünsche Ihnen alles Gute für Ihr Studium. Danke an meinen Freundin Siqi Xu, ich möchte alles mit dir teilen, auch wenn wir weit voneinander entfernt sind. Ich freue mich, in der Danksagung deiner Bachelorarbeit zu stehen.

Mein größter Dank gilt meinen Eltern da sie nicht nur finanziell unterstützt haben, sondern immer an mich geglaubt und mich ermunrtigt.

Kurzzusammenfassung

Inhalt
Formelzeichen- und Abkürzungsverzeichnis.. 7
1. Einleitung .. 8
2. Erläuterung der Funktionsweise der adiabaten Kühlung ... 9
3. Ambulanzgebäude der Medizinischen Hochschule Hannover .. 11
4. Potentialanalyse des Regenwassers .. 13
 4.1. Jährlichen Niederschlag in Hannover .. 13
 4.2. Vorteile des Regenwassers im Vergleich zum Trinkwasser .. 14
5. Potentialanalyse der adiabaten Kühlung mit Regenwasser .. 15
 5.1 Energiebedarf der bestehenden RLT- Anlage im MHH ... 15
 5.2 Energieeinsparung der adiabaten Kühlung im Vergleich zu der konventionellen Kühlung .. 18
 5.2.1 Stromverbrauch & Wasserverbrauch ... 19
 5.2.2 CO2-Emissionen ... 27
6. Planung der adiabaten Kühlung mit Regenwasser im MHH ... 28
 6.1 Rechtliche Rahmenbedingungen .. 28
 6.1.1 DIN 1946-4 ... 29
 6.1.2 DIN EN 13053 .. 32
 6.1.3 DIN 1989-1 ... 34
 6.1.4 VDI 3803 Blatt 1 .. 40
 6.2 Auswahl der technischen Anlagen des Wasseraufbereitungssystem ... 42
 6.2.1 Filter .. 43
 6.2.2 AQUALOOP System .. 45
 6.2.3 RAINMASTER Favorit SC .. 46
 6.2.4 Regenwasserzisterne ... 47
7. Wirtschaftlichkeit .. 48
 7.1. Grundlagen der Wirtschaftlichkeit .. 48
 7.2. Investitionskosten .. 49
 7.3. Jahresgesamtkosten .. 51
 7.3.1. Kapitalkosten und Kosten für Wartung und Instandhaltung .. 51
 7.3.2. Energiekosten .. 52
 7.3.3. Verlauf der Jahresgesamtkosten ... 54
 7.3.4. Kumulierte Kosten ... 55
 7.4. Zusammenfassung der Wirtschaftlichkeit ... 56
8. Fazit ... 57
9. Literaturverzeichnis .. 57
10. Anhang .. 59
A 10.1. Tabelle der VDI 3803 Blatt 1 .. 59
A 10.2. Auslegung der Speichergöße der DIN 1989-1 .. 60
Formelzeichen- und Abkürzungsverzeichnis

Lateinische Buchstaben

<table>
<thead>
<tr>
<th>Formelzeichen</th>
<th>Einheit</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_L</td>
<td>kg/h</td>
<td>Abluft-Massenstrom</td>
</tr>
<tr>
<td>c_p</td>
<td>kJ/kg K</td>
<td>Wärmeemkapatität</td>
</tr>
<tr>
<td>ϑ_{ein}</td>
<td>K</td>
<td>Lufteintritt-Temperatur des Befeuchters</td>
</tr>
<tr>
<td>ϑ_{aus}</td>
<td>K</td>
<td>Luftaustritt-Temperatur des Befeuchters</td>
</tr>
<tr>
<td>Q_W</td>
<td>kW</td>
<td>Adiabate Kühlleistung</td>
</tr>
<tr>
<td>m_W</td>
<td>kg/h</td>
<td>Wassermassenstrom</td>
</tr>
<tr>
<td>q_W</td>
<td>kJ/kg</td>
<td>spezifischen Verdampfungswärme</td>
</tr>
<tr>
<td>Q_{adK}</td>
<td>kWh</td>
<td>Adiabate Kühllenergie</td>
</tr>
<tr>
<td>Q_{adN}</td>
<td>kWh</td>
<td>Genutzte adiabate Kühlenergie</td>
</tr>
<tr>
<td>η_{KVS}</td>
<td>1</td>
<td>Wirkungsgrad des Kreislaufverbundsystem</td>
</tr>
<tr>
<td>$P_{hydraulisch}$</td>
<td>W</td>
<td>Hydraulische Leistung</td>
</tr>
<tr>
<td>η_{Pumpe}</td>
<td>1</td>
<td>Wirkungsgrad der Wasserpumpen</td>
</tr>
<tr>
<td>P_{el}</td>
<td>W</td>
<td>Leistungsaufnahme der Wasserpumpen</td>
</tr>
<tr>
<td>W_{el}</td>
<td>kWh</td>
<td>Elektrische Arbeit der Wasserpumpen</td>
</tr>
<tr>
<td>t</td>
<td>h</td>
<td>Betriebsstunde der Wasserpumpen</td>
</tr>
</tbody>
</table>

Griechische Buchstaben

<table>
<thead>
<tr>
<th>Formelzeichen</th>
<th>Name</th>
<th>Einheit</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϑ_{ein}</td>
<td>Theta</td>
<td>°C</td>
<td>Lufteintritt-Temperatur des Befeuchters</td>
</tr>
<tr>
<td>ϑ_{aus}</td>
<td>Theta</td>
<td>°C</td>
<td>Luftaustritt-Temperatur des Befeuchters</td>
</tr>
<tr>
<td>η_{KVS}</td>
<td>Eta</td>
<td>1</td>
<td>Wirkungsgrad des Kreislaufverbundsystem</td>
</tr>
<tr>
<td>η_{Pumpe}</td>
<td>Eta</td>
<td>1</td>
<td>Wirkungsgrad der Wasserpumpen</td>
</tr>
</tbody>
</table>

Indizes, Abkürzungen

- KVS: Kreislaufverbundsystem
- COP: Leistungszahl der Kältemaschine
- KKM: Kompressionskältemaschine
- RLT-Geräte: Raumlufttechnische Geräte
- a: Jahr; jährlich; auf das Jahr bezogen
1. Einleitung

Indirekte Verdunstungskühlung wird derzeit in einer Reihe von Gebäuden eingesetzt, auch in Krankenhäusern findet diese Art der Kühlung zunehmend Anwendung, da die hohen inneren Wärmelasten dieser komplexen Gebäude im Sommer energieeffizient abgeführt werden müssen, und in der Regel Wäscherwasser für die Verdunstungskühlung verwenden.

Anschließend werden die rechtlichen Randbedingungen für die adiabate Kühlung aufgezeigt und eine Auslegung einer adiabaten Kühlung mit Regenwasseraufbereitung für das Ambulanzgebäude vorgestellt.

2. Erläuterung der Funktionsweise der adiabaten Kühlung

Neben der Luftgeschwindigkeit, mit welcher der Verdunstungskühler durchströmt wird, hängt die verdunstete Wassermenge und somit die erreichte Abkühlung von dem Luftzustand ab, mit der die Abluft in den Verdunstungskühler eintritt. Ausschlaggebend sind dabei:

- die Lufttemperatur vor der Verdunstung: je niedriger diese ist, umso weniger Feuchte kann aufgenommen werden und umso geringer wird der Abkühleffekt;
- die Luftfeuchtigkeit vor der Verdunstung: je mehr Wasser die Luft bereits enthält, umso weniger Feuchte kann sie aufnehmen und desto geringer wird die erzielte Temperaturabsenkung.

Die theoretische Grenze der Verdunstungskühlung ist bei kompletter Sättigung der Luft mit Wasser erreicht – also bei einer relativen Luftfeuchtigkeit von 100 %. In RLT-Anlagen sind mit wirtschaftlich vertretbarem Aufwand Feuchteerhöhungen auf Werte von 92 bis 95 % je nach Bauart des verwendeten Verdunstungskühlers realistisch.[2]

Abbildung 1: Schematischer Aufbau einer RLT-Anlage mit indirekter Verdunstungskühlung
3. Ambulanzgebäude der Medizinischen Hochschule Hannover

Das neue Ambulanzgebäude der Medizinischen Hochschule Hannover hat vier Etagen. Den vier Ebenen des neuen Ambulanzgebäudes sind folgender Nutzung zugeordnet:

- U0: Technikflächen und Lagerräume
- S0: Urologische Ambulanz, mit direkter Anbindung an die Magistrale
- H0: Dermatologisch Ambulanz, mit direkter Anbindung an die Magistrale
- O1: Dermatologie, Tagesklinik und Therapie

Das Zuluftgerät versorgt alle Bereiche des neuen Ambulanzgebäudes. Der Zuluftvolumenstrom beträgt 35.360 m³/h. Für die kurzen Intervalle der Nutzung der Abluftanlage Spülküche in der Eben H0 wird der Zuluftvolumenstrom dann 36.360 m³/h betragen.

Über das Abluftgerät werden alle Bereiche des neuen Ambulanzgebäudes entlüftet. Der Abluftvolumenstrom beträgt 34.860 m³/h. Zusätzlich wurden vier Abluftanlagen installiert:

- Abluftanlage für das Gasflaschenlager Ebene U0
- Abluftanlage Autoklav für die Spülküche Ebene H0 (teilweise)
- 24h-Abluftanlage für Labor und Lager Ebene H0 (teilweise)
- Abluftanlage Teilbereiche Ebene O1 für Abführung zu hoher Wärmelasten

Die Außenluft wird über einen Ansaugturm angesaugt und über ein bauseitig gemauertes Plenum zum Zuluftgerät geführt. Die Außenluftrate beträgt 100%. Das Zu- und das Abluftgerät sind mit Komponenten einer hocheffizienten Wärme- und Kälterückgewinnungsanlage ausgerüstet. Im Zuluftgerät wurde hierfür ein Heizregister zur Filtervorerwärmung sowie zur Nacherwärmung eingesetzt. Im Abluftgerät wurde hierfür ein Wabenbefeuchter sowie ein Kühlregister eingesetzt. Die Wasserquelle für die Verdunstungskühlung ist Trinkwasser, das in den Wabenbefeuchter geleitet wird.

Ein Nacherhitzer und ein Nachkühler sind ebenfalls in der Wärmerückgewinnungsanlage installiert. Im Sommerbetrieb, wenn das verfügbare Potenzial nicht ausreicht, um die gesamte Zuluft zu kühlen, wird die Kühlung durch den Nachkühler ergänzt und die zusätzliche Kühlerenergie wird vollständig durch den Kompressionskältemaschine erzeugt.

Der COP-Wert für den Kompressionskältemaschine ist 4,32.
Abbildung 2: Funktionsschema eines Gegenstrom-Wärmeaustauschersystems im Ambulanzgebäude
4. Potentialanalyse des Regenwassers

4.1. Jährlichen Niederschlag in Hannover

Abbildung 3 Durchschnittlicher Niederschlag pro Monat in Hannover von Jan 2019 bis Dez 2021

Abbildung 3 Durchschnittlicher Niederschlag pro Monat in Hannover von Jan 2019 bis Dez 2021
4.2. Vorteile des Regenwassers im Vergleich zum Trinkwasser

Auf dem Gelände der Medizinischen Hochschule Hannover fällt ausreichend Niederschlag, der in Zisternen gespeichert und gefiltert wird, so dass er zur Verdunstungskühlung genutzt werden kann – eine gute Alternative zu einer konventionellen Gebäudekühlung. Außerdem hat Regenwasser große Betriebskosteneinsparung und Energieeinsparung und bietet viele Vorteile gegenüber Trinkwasser. Hintergrund für die erhebliche Einsparung ist:

5. Potentialanalyse der adiabaten Kühlung mit Regenwasser

5.1 Energiebedarf der bestehenden RLT-Anlage im MHH

Die Daten für die folgende Analyse stammen aus den Messungen im Sommer 2019 (01.06.2019 bis 30.09.2019). Bei den Messdaten handelt es sich hauptsächlich um die Temperatur an mehreren Messpunkten innerhalb dem Zu- und Abluftstrang, wobei die Daten stündlich erfasst werden. Die genauen Standorte der Messpunkte sind nachstehend aufgeführt.

Abbildung 4 Temperatur-Messpunkte

Der Zuluftvolumenstrom beträgt 16.000 \(m^3/h \) und Abluftvolumenstrom beträgt 15.750 \(m^3/h \) im Betriebszustand. Auf der Grundlage dieser Daten wurden die Kühllast des Krankenhauses im Sommer, die Leistung der adiabaten Kühlung, das verfügbare und das tatsächlich zu nutzende Kühlpotential berechnet.

Abbildung 5 Verteilung der Kühlenergie MHH im Sommer 2019

Verteilung der Kühlenergie im Sommer 2019

in kWh

<table>
<thead>
<tr>
<th>Kühlenergie Zuluft</th>
<th>Potenzial genutzt</th>
<th>4625, 14%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potenzial mit ad.Kü</td>
<td>11275, 35%</td>
<td></td>
</tr>
<tr>
<td>Potenzial ungenutzt</td>
<td>6650, 21%</td>
<td></td>
</tr>
<tr>
<td>Potenzial genutzt, 4357, 14%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>minimal notwendige Zusatzkühlung, 13902, 43%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kühlenenergie Zuluft, 32101, 100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potenzial ungenutzt</td>
<td>2567, 8%</td>
<td></td>
</tr>
<tr>
<td>Potenzial ohne ad.Kü</td>
<td>6924, 22%</td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 5 Verteilung der Kühlenergie MHH im Sommer 2019

Neben der Luftseite wird auch der Wasserverbrauch auf der Wasserseite berechnet. Der Wasserverbrauch des Befeuchters wird aus der Wärmebilanz des Befeuchters bestimmt.

![Wärmebilanz des Befeuchters](image)

Abbildung 6 Wärmebilanz des Befeuchters

Wärmebilanz des Befeuchters:

\[m_L \cdot c_p \cdot \vartheta_{ein} + q_W = m_L \cdot c_p \cdot \vartheta_{aus} \] \hspace{1cm} \textit{Gl. (1)}

\[m_L \cdot c_p \cdot \vartheta_{ein} + q_W \cdot m_W = m_L \cdot c_p \cdot \vartheta_{aus} \] \hspace{1cm} \textit{Gl. (2)}

\(q_W \): spezifischer Verdampfungswärme, bei 20 °C (z. B. Verdunsten bei Zimmertemperatur) ist 2,46 MJ/kg = 0,68 kWh/kg[5]

Die verbrauchte Wassermenge lässt sich aus der Wärmebilanz des Befeuchters ableiten:

<table>
<thead>
<tr>
<th>Tabelle 1 Nettowasserverbrauch des Befeuchters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nettowasserverbrauch (Liter)</td>
</tr>
<tr>
<td>Juni</td>
</tr>
<tr>
<td>Juli</td>
</tr>
<tr>
<td>August</td>
</tr>
<tr>
<td>September</td>
</tr>
<tr>
<td>gesamt</td>
</tr>
</tbody>
</table>

Die Analyse der Überwachungsdaten zeigt, dass der Hauptgrund dafür darin liegt, dass die Ablufttemperatur nach der Verdunstungskühlung nicht niedrig genug ist. Abgeleitet aus der Wärmebilanz des Befeuchters:

\[
\vartheta_{aus} = \vartheta_{ein} + \frac{Q_w}{m_L c_p}
\]

Gl. (3)

Durch die Erhöhung der Wassermenge in den Befeuchtern kann ein größerer Teil der in der Abluft enthaltenen Abwärme abgeführt werden. Dies führt zu einer Erhöhung des verfügbaren adiabatischen Potenzials.
5.2 Energieeinsparung der adiabaten Kühlung im Vergleich zu der konventionellen Kühlung

In der Potentialanalyse wird drei verschiedene Annahmen verglichen und im Hinblick auf Energieverbrauch, CO2-Emissionen und Kosten analysiert. Somit ergeben sich für die MHH die nachfolgenden Varianten:

- **Variante 0**
 In der Variante 0 wird die Kühlung der Luft nur mithilfe des KVS und eine KKM realisiert. Hierbei sind die Investitionskosten geringer als Ist-Zustand der RLT-Anlage. Aber der Stromverbrauch und die CO2-Emissionen werden entsprechend viel höher sein.

- **Variante 1**
 Bei der Variante 1 wird die Luftkühlung durch eine adiabate Kühlung mit Trinkwasser unterstützt. Diese Variante ist auch die RLT-Anlage, die derzeit im Krankenhaus läuft.

- **Variante 2**

- **Variante 3**
 Variante 3 entspricht der Variante 1 nur wird hier die adiabate Kühlung nicht mit Trinkwasser, sondern mit Regenwasser betrieben. Variante 3 erfordert also zusätzliche Regenwasseraufbereitung. Sollte das gespeicherte Regenwasser nicht ausreichen wird aus dem Trinkwassernetz die erforderliche Wassermenge nachgespeist.

- **Variante 4**
 Variante 4 hat die gleiche Luftkühlungsweise von Variante 3. Aber der Unterschied besteht darin, dass bei Variante 4 das adiabatische Potential 70% der Kühlenergie der Zuluft abdeckt. In diesem Fall wird mehr Kühlleistung vom Kältekompressor eingespart.
5.2.1 Stromverbrauch & Wasserverbrauch

- Erläuterung der Berechnung

Bei den Varianten 2 und 4 beträgt das genutzte adiabatische Potenzial 22.471 kWh und der Wirkungsgrad des KVS 75 % (siehe Unterlagen).

\[
Q_{adK} = \frac{Q_{adN}}{\eta_{KVS}}
\]

\[
= \frac{22.471\text{kWh}}{75\%}
\]

\[
= 29961 \text{kWh}
\]

\text{Gl. (4)}

\(Q_{adK}\) ist die Energie, die durch die Verdunstung des Wassers bereitgestellt wird; die benötigte Wassermenge kann anhand der Wärmebilanz des Befeuchters ermittelt werden.

\[
m_W = \frac{Q_{adK}}{q_W}
\]

\[
= \frac{22961\text{kWh}}{0,68\frac{\text{kWh}}{\text{kg}}}
\]

\[
= 33.766\text{kg}
\]

\text{Gl. (5)}

Der Nettowasserbedarf beträgt 33.766 Liter, unter Berücksichtigung der Befeuchtungsgrad ergibt sich ein tatsächlicher Wasserbedarf von 52.526 Liter.

\[
P_{\text{hydraulisch}} = V_{\text{luft}} \cdot \Delta p_{\text{Befeuchter}}
\]

\[
= 15750 \frac{m^3}{h} \cdot 50Pa \cdot \frac{1 \text{m}^3}{1 \text{Pa} \cdot 3600s}
\]

\[
= 218,75W
\]

\[
P_{\text{el}} = \frac{P_{\text{hydraulisch}}}{\eta_{\text{Pumpe}}}
\]

\[
= \frac{218,75w}{0,5}
\]

\[
= 437,5w
\]

Sowohl bei Variante 1 als auch bei Variante 3 wird die Gesamtzahl der Betriebsstunden der Wasserpumpen von Juni bis September mit 167 angenommen.

\[
W_{\text{el}} = P_{\text{el}} \cdot t
\]

\[
= 0,4375kW \cdot 167h
\]

\[
= 73kWh
\]

Der Stromverbrauch der Wasserpumpe steigt in gleichem Maße wie der Wasserverbrauch, so dass der Stromverbrauch der Pumpe in den Varianten 2 und 4 von 317 kWh beträgt.
Tabelle 2 Strom- und Wasserverbrauch der Variante 0

<table>
<thead>
<tr>
<th>Variante 0</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kühlenergie Zuluft</td>
<td>32101 kWh Kälte</td>
<td></td>
</tr>
<tr>
<td>genutzt ad. Potenzial ohne ad. Kühlung</td>
<td>4357 kWh Kälte</td>
<td></td>
</tr>
<tr>
<td>zusätzliche Kühlenergie (RLT-Kühler)</td>
<td>27744 kWh Kälte</td>
<td></td>
</tr>
<tr>
<td>Verteilverluste (5% Kühlenergie Zuluft)</td>
<td>1605 kWh Kälte</td>
<td></td>
</tr>
<tr>
<td>Strom Verteilung (5% Bedarf der KM)</td>
<td>340 kWh Strom</td>
<td></td>
</tr>
<tr>
<td>Kälteerzeugung</td>
<td>29349 kWh Kälte</td>
<td></td>
</tr>
<tr>
<td>Strombedarf (COP = 4,32)</td>
<td>6794 kWh Strom</td>
<td></td>
</tr>
<tr>
<td>Strombedarf gesamt</td>
<td>7133 kWh Strom</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 3 Strom- und Wasserverbrauch der Variante 1

<table>
<thead>
<tr>
<th>Variante 1</th>
<th></th>
<th>kWh Kälte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kühlenergie Zuluft</td>
<td>32101</td>
<td>kWh Kälte</td>
</tr>
<tr>
<td>genutzt Potenzial mit ad. Kühlung</td>
<td>4625</td>
<td>kWh Kälte</td>
</tr>
<tr>
<td>genutzt ad. Potenzial ohne ad. Kühlung</td>
<td>4357</td>
<td>kWh Kälte</td>
</tr>
<tr>
<td>gesamt regenerative Anteil</td>
<td>8982</td>
<td>kWh Kälte</td>
</tr>
<tr>
<td>zusätzliche Kühlenergie (RLT-Kühler)</td>
<td>23119</td>
<td>kWh Kälte</td>
</tr>
<tr>
<td>Strombedarf der Pumpen zur Trinkwasserversorgung</td>
<td>73</td>
<td>kWh Strom</td>
</tr>
<tr>
<td>Verteilverluste (5% Kühlenergie Zuluft)</td>
<td>1605</td>
<td>kWh Kälte</td>
</tr>
<tr>
<td>Strom Verteilung (5% Bedarf der KM)</td>
<td>286</td>
<td>kWh Strom</td>
</tr>
<tr>
<td>Kälteerzeugung</td>
<td>24724</td>
<td>kWh Kälte</td>
</tr>
<tr>
<td>Strombedarf (COP = 4,32)</td>
<td>5723</td>
<td>kWh Strom</td>
</tr>
<tr>
<td>Strombedarf gesamt</td>
<td>6082</td>
<td>kWh Strom</td>
</tr>
<tr>
<td>Trinkwasserbedarf</td>
<td>14078</td>
<td>Liter</td>
</tr>
<tr>
<td>Abschlämmwassermenge</td>
<td>2260</td>
<td>Liter</td>
</tr>
<tr>
<td>Trinkwasserverbrauch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variante 2</td>
<td>kWh Kälte</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Kühlenergie Zuluft</td>
<td>32101</td>
<td></td>
</tr>
<tr>
<td>genutzt Potenzial mit ad. Kühlung (70% abgedeckt)</td>
<td>22471</td>
<td></td>
</tr>
<tr>
<td>genutzt ad. Potenzial ohne ad. Kühlung</td>
<td>4357</td>
<td></td>
</tr>
<tr>
<td>gesamt regenerative Anteil</td>
<td>26828</td>
<td></td>
</tr>
<tr>
<td>zusätzliche Kühlenergie (RLT-Kühler)</td>
<td>5273</td>
<td></td>
</tr>
<tr>
<td>Strombedarf der Pumpen zur Trinkwasserversorgung</td>
<td>317</td>
<td></td>
</tr>
<tr>
<td>Verteilverluste (5% Kühlenergie Zuluft)</td>
<td>1605</td>
<td></td>
</tr>
<tr>
<td>Strom Verteilung (5% Bedarf der KM)</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Kälteerzeugung</td>
<td>6878</td>
<td></td>
</tr>
<tr>
<td>Strombedarf (COP = 4,32)</td>
<td>1592</td>
<td></td>
</tr>
<tr>
<td>Strombedarf gesamt</td>
<td>1989</td>
<td></td>
</tr>
<tr>
<td>Trinkwasserverbrauch</td>
<td>52516</td>
<td></td>
</tr>
<tr>
<td>Abschlämmwassermenge</td>
<td>9548</td>
<td></td>
</tr>
<tr>
<td>Variante 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Kühlenergie Zuluft</td>
<td>32101 kWh Kälte</td>
<td></td>
</tr>
<tr>
<td>genutzt Potenzial mit ad. Kühlung</td>
<td>4625 kWh Kälte</td>
<td></td>
</tr>
<tr>
<td>genutzt ad. Potenzial ohne ad. Kühlung</td>
<td>4357 kWh Kälte</td>
<td></td>
</tr>
<tr>
<td>gesamt regenerative Anteil</td>
<td>8982 kWh Kälte</td>
<td></td>
</tr>
<tr>
<td>Strombedarf des Regenwasseraufbereitung</td>
<td>16 kWh Strom</td>
<td></td>
</tr>
<tr>
<td>Strombedarf der Pumpen zur Regenwasserversorgung</td>
<td>73 kWh Strom</td>
<td></td>
</tr>
<tr>
<td>zusätzliche Kühlenergie (RLT-Kühler)</td>
<td>23119 kWh Kälte</td>
<td></td>
</tr>
<tr>
<td>Verteilverluste (5% Kühlenergie Zuluft)</td>
<td>1605 kWh Kälte</td>
<td></td>
</tr>
<tr>
<td>Strom Verteilung (5% Bedarf der KM)</td>
<td>286 kWh Strom</td>
<td></td>
</tr>
<tr>
<td>Kälteerzeugung</td>
<td>24724 kWh Kälte</td>
<td></td>
</tr>
<tr>
<td>Strombedarf (COP = 4,32)</td>
<td>5723 kWh Strom</td>
<td></td>
</tr>
<tr>
<td>Strombedarf gesamt</td>
<td>6098 kWh Strom</td>
<td></td>
</tr>
<tr>
<td>Trinkwasserverbrauch</td>
<td>14078 Liter</td>
<td></td>
</tr>
<tr>
<td>Abschlämmwassermenge</td>
<td>2260 Liter</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 6 Strom- und Wasserverbrauch der Variante 4

<table>
<thead>
<tr>
<th>Variante 4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kühlenergie Zuluft</td>
<td>32101 kWh Kälte</td>
</tr>
<tr>
<td>genutzt Potenzial mit ad. Kühlung (70% abgedeckt)</td>
<td>22471 kWh Kälte</td>
</tr>
<tr>
<td>genutzt ad. Potenzial ohne ad. Kühlung</td>
<td>4357 kWh Kälte</td>
</tr>
<tr>
<td>gesamt regenerative Anteil</td>
<td>26827,7 kWh Kälte</td>
</tr>
<tr>
<td>Strombedarf des Regenwasseraufbereitung</td>
<td>16 kWh Strom</td>
</tr>
<tr>
<td>Strombedarf der Pumpen zur Regenwasserversorgung</td>
<td>317 kWh Strom</td>
</tr>
<tr>
<td>zusätzliche Kühlenergie (RLT-Kühler)</td>
<td>5273 kWh Kälte</td>
</tr>
<tr>
<td>Verteilverluste (5% Kühlenergie Zuluft)</td>
<td>1605 kWh Kälte</td>
</tr>
<tr>
<td>Strom Verteilung (5% Bedarf der KM)</td>
<td>80 kWh Strom</td>
</tr>
<tr>
<td>Kälteerzeugung</td>
<td>6878 kWh Kälte</td>
</tr>
<tr>
<td>Strombedarf (COP = 4,32)</td>
<td>1592 kWh Strom</td>
</tr>
<tr>
<td>Strombedarf gesamt</td>
<td>2005 kWh Strom</td>
</tr>
<tr>
<td>Trinkwasserbedarf</td>
<td>52516 Liter</td>
</tr>
<tr>
<td>Abschlämmwassermenge</td>
<td>9548 Liter</td>
</tr>
</tbody>
</table>

Tabelle 7 Strom- und Wasserverbrauch der einzelnen Varianten

<table>
<thead>
<tr>
<th></th>
<th>Variante 0</th>
<th>Variante 1</th>
<th>Variante 2</th>
<th>Variante 3</th>
<th>Variante 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strombedarf</td>
<td>7133 kWh</td>
<td>6082 kWh</td>
<td>1989 kWh</td>
<td>6098 kWh</td>
<td>2005 kWh</td>
</tr>
<tr>
<td>Trinkwasserbedarf</td>
<td>0</td>
<td>14,08 m³</td>
<td>52,52 m³</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Regenwasserbedarf</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14,08 m³</td>
<td>52,52 m³</td>
</tr>
<tr>
<td>Abwassermenge</td>
<td>0</td>
<td>2,26 m³</td>
<td>9,55 m³</td>
<td>2,26 m³</td>
<td>9,55 m³</td>
</tr>
</tbody>
</table>
5.2.2 CO2-Emissionen

Auch Wärmerückgewinnungssysteme mit zusätzlicher adiabater Kühlung leisten einen wesentlichen Beitrag zur Reduzierung der CO2-Emissionen.

CO2-Äquivalente:
- Strom: 0,42 kg/kWh [5]
- Trinkwasser: 0,35 kg/m³ [6]
- Abwasser: 0,708 kg/m³ [7]

Bei der Betrachtung den CO2- Emissionen ist die Variante 4 am günstigsten, dicht gefolgt von den Variante 2. Im Vergleich zur Variante 0 kann die adiabate Kühlung die CO2-Emissionen um mehr als 70% reduzieren.
6. Planung der adiabaten Kühlung mit Regenwasser im MHH

6.1 Rechtliche Rahmenbedingungen

Die adiabate Kühlung der RLT-Anlage soll mithilfe von Trinkwasser- oder Regenwassernutzung realisiert werden. Krankenhäuser haben höhere Anforderungen an die hygienischen Bedingungen. Daher gibt es detaillierte Anforderungen an die Komponenten im Klimagerät, die Qualität des verdunsteten Wassers und so weiter. Die folgenden Normen sind betroffen:

- DIN 1946-4 Raumlufttechnik – Teil 4: Raumlufttechnische Anlagen in Gebäuden und Räumen des Gesundheitswesens
- DIN EN 13053 Lüftung von Gebäuden – Zentrale raumlufttechnische Geräte – Leistungskenngrößen für Geräte, Komponenten und Baueinheiten
- DIN 1989-1 Regenwassernutzungsanlagen Teil 1: Planung, Ausführung, Betrieb und Wartung
- VDI 3803 Blatt 1 Raumlufttechnik - Bauliche und technische Anforderungen - Zentrale RLT-Anlagen
6.1.1 **DIN 1946-4**

Die nachfolgenden Anforderungen für RLT-Geräte gelten sowohl für zentrale und dezentrale Geräte als auch für einzelne Komponenten, die der Luftförderung, Luftfilterung und thermodynamischen Behandlung dienen.

- **Luftfilter**

 Bereits im Rahmen der Planung von RLT-Anlagen ist sicherzustellen, dass eine Taupunktunterschreitung im Bereich der Luftfilter, insbesondere bei Stillstand der Anlage, verhindert wird.

 Die Filterfläche muss $\geq 10 \text{ m}^2$ je m^2 Gerätequerschnittsfläche betragen.

 Zum Abscheiden von partikulären Verunreinigungen einschließlich Mikroorganismen ist eine mehrstufige Filterung der Zuluft erforderlich.

 Für Räume der Raumklasse I ist eine dreistufige Zuluftfilterung erforderlich, wobei die beiden ersten Filterstufen im RLT-Gerät und die 3. Filterstufe endständig installiert werden müssen:

 — 1. Filterstufe Filterklasse ISO ePM1 ≥ 50 % (vormals F7), im weiteren Normtext: PM1/≥ 50,
 — 2. Filterstufe Filterklasse ISO ePM1 ≥ 80 % (vormals F9), im weiteren Normtext: PM1/≥ 80,

 Für Räume der Raumklasse II ist nur eine Filterung mit den Filterstufen 1. und 2. (ohne Schwebstofffilter) erforderlich.

 Zum Schutz von Komponenten in Abluftsystenem mit Partikelbelastung ist ein Luftfilter im Abluftbereich mit der Filterklasse PM1/≥ 50 vorzusehen.

- **Wärmeübertrager**

 Wärmeübertrager sind so zu gestalten, dass sie einfach zu reinigen und zu desinfizieren sind. Eine von der An- zur Abströmseite durchgehende Reinigung ist aus
Gründen der Hygiene sicherzustellen. Für Wärmeübertreger ab einer Bautiefe von 300 mm (450 mm bei fluchtender Rohranordnung), bezogen auf einen Lamellenabstand von 2 mm, sind daher besondere Maßnahmen erforderlich, eine geteilte Ausführung mit entsprechender Zugangsmöglichkeit wird empfohlen. Bei größeren Lamellenabständen kann die zulässige Bautiefe proportional und linear größer gewählt werden.
Für Lamellenwärmeübertrager sind korrosionsbeständige Materialien vorzusehen, wie z. B.:
— Lamellen: Aluminium;
— Rohre: Kupfer;
— Sammler: Kupfer, Stahl verzinkt.
Alle luftführenden Oberflächen müssen technisch glatt, korrosionsbeständig und ohne technische Hilfsmittel inspizierbar und reinigungsfähig sein.

• Tropfenabscheider
Wollen, abweichend zu 6.5.8.2, Tropfenabscheider dennoch erforderlich, ist sicherzustellen, dass keine Wassertropfen vom Befeuchter oder Luftkühler in nachfolgende Komponenten oder Anlageteile gelangen können. Lässt sich dies nachweislich ausschließlich mittels Tropfenabscheidern erreichen, sind diese vor der 2. Filterstufe anzuordnen. Sie müssen korrosionsbeständig, reinigungsfähig, zur Reinigung aus dem Gerätegehäuse über Bediendeckel oder -türen herausziehbar und bis zu den Einzellamellen demontierbar installiert werden.

• Wärmerückgewinnung
Für Wärmeübertrager in Wärmerückgewinnungssystemen gelten die in 6.5.8 getroffenen Festlegungen sowie die Anforderungen nach DIN EN 13053. Bei der Planung ist der Einbau von Kondensatwannen nach 6.5.5 zu beachten. Es sind ausschließlich Wärmerückgewinnungs-Systeme zulässig, bei denen keine Stoffübertragung möglich ist; in Räumen der Raumklasse I sind Kreislaufverbundsysteme erforderlich. Adiabate Verdunstungskühlsysteme sind nur in der Abluft und nur mittels Kreislaufverbundsystemen zulässig.

• Luftbefeuchter
Aus hygienischen Gründen sind ausschließlich Befeuchtungseinrichtungen mit gesundheitlich unbedenklichem Dampf zulässig.

Die Luftbefeuchter sind für Betrieb, Ausfall der RLT-Anlage und fehlenden oder zu geringen Zuluftvolumenstrom so auszulegen, dass keine Tröpfchenbildung im Zuluftvolumenstrom nach den Befeuchtern auftritt. Die relative Luftfeuchte am Ende der Befeuchtungsstrecke darf maximal 90 % nicht übersteigen. Daher muss die Befeuchtungsstrecke ausreichend dimensioniert und eine homogene Verteilung über den Gerätequerschnitt sichergestellt sein.

Befeuchtersysteme müssen uneingeschränkt zugänglich, inspizierbar und zu reinigen sein.
6.1.2 DIN EN 13053

- Wärmerückgewinnungseinheiten

- Tropfenabscheider

Für die Ableitung von Feuchtigkeit, die Reinigung, die Materialien und die Desinfektion gelten dieselben Anforderungen wie für Befeuchter. Bei Luftkühlern die zur Entfeuchtung der Luft ausgelegt sind, müssen die folgenden Punkte beachtet werden:

a) Kein Mitreißen von Feuchtigkeit hin zu Bauteilen oder Baueinheiten, die dem Wärmeübertrager nachfolgen.

b) Luftkühler mit Entfeuchtungsfunktion dürfen aus hygienischen Gründen nicht unmittelbar vor Luftfiltern oder Schalldämpfern angeordnet werden. Um die relative Luftfeuchte zu begrenzen müssen Ventilatoren oder Lufterwärmer dazwischengeschaltet werden.

c) Luftkühler müssen mit Kondensatwannen aus korrosionsbeständigen Materialien (z. B. mindestens AISI 316, nicht rostender Stahl 1.4301 oder korrosionsbeständigen Aluminiumlegierungen (mindestens AlMg) ausgestattet sein, die ein Gefälle haben, um eine ungehinderte Abführung von Kondensat zu ermöglichen.

d) Damit kein Kondensat an den Anschlussleitungen entsteht, müssen diese an den Durchtrittsstellen durch das Gehäuse gedämmt sein.

e) Aus hygienischen und energetischen Gründen sollten Tropfenabscheider nur dann verwendet werden, wenn auf Grund der Strömungsgeschwindigkeit im Luftkühler ein Mitreißen von Tropfen nicht auszuschließen ist. Ihre Konstruktion muss ein leichtes Ausziehen und Demontieren ermöglichen, ohne dass sich dabei Auswirkungen auf andere Komponenten ergeben; Die beidseitige Reinigung des Luftkühlers in montiertem Zustand muss möglich sein.

f) Alternativ muss bis zu einer inneren Höhe von 1,6 m die Demontage zum Zweck der Reinigung möglich sein.
g) Im Fall einer Ausführung in Kupfer/Kupfer oder Kupfer/Aluminium wird aus Gründen des Korrosionsschutzes die Verwendung eines Sammlers aus Kupfer empfohlen. Werden Luftkühler aus galvanisiertem Stahl verwendet, so wird feuerverzinkter Stahl empfohlen.

- Befeuchter

Nur Befeuchterwasser, dessen Bakterienkonzentration nicht der Gesundheit abträglich ist, darf zu lufttechnischen Zwecken verwendet werden. Sobald der Verdacht besteht, dass die Anzahl der Bakterien das zulässige Maß überschreitet, muss das Befeuchterwasser auf pathogene Bakterien überprüft werden. Der obere Grenzwert für nicht pathogene Bakterien beträgt 10 000 KBE1 · ml−1. Jedoch sollte ab einer Konzentration von 1 000 KBE · ml−1 im Befeuchterwasser die Anlage überprüft und gereinigt werden.

Die Instandhaltungsanleitungen des Herstellers müssen verfügbar sein und beachtet werden.

In den Fällen, in denen Befeuchter mit Umlaufwasser betrieben werden, ist es aus Gründen einer Reduzierung von Bakterien, gelösten Feststoffen und Schmutzpartikeln besser, die gesamte Wäscherwanne vollständig zu entleeren als kontinuierlich Wasser abzulassen.

6.1.3 **DIN 1989-1**

- **Filter**

Filter werden nach ihrer Bauart unterschieden in

- Systeme mit separater Ableitung von Fremdstoffen aus dem Filter und
- Systeme mit Fremdstoffrückhaltung innerhalb des Filters.

Für die Planung und Ausführung sind folgende Hinweise zu beachten:

- Filter sind nach ihrer Reinigungsleistung (z. B. Wirkungsgrad, Standzeit, Durchlassweite) auszuwählen. Es sind genormte Filter zu verwenden.
- Bei der Anordnung von Filtersystemen ist der Winterbetrieb zu berücksichtigen.
- Bei Erdeinbau sollte die Höhendifferenz zwischen Filterzulauf und Filterablauf möglichst gering sein. Die Höhenlage des Speichers und der nachfolgenden Entwässerungseinrichtungen ist hiervon abhängig.
- Das Filtersystem darf einschließlich Anschlussleitungen den Querschnitt des Zulaufs nicht verengen. Auch bei Störungen der Filterfunktion muss sichergestellt sein, dass ein ungehindeter Abfluss des Niederschlagswassers möglich ist.
- Filter, die unterhalb der Rückstauebene an den Abwasserkanal angeschlossen sind, müssen gegen Rückstau gesichert sein.
- Filtersysteme sind gut zugänglich zu installieren. Eine einfache Inspektion und Reinigung muss möglich sein, um die Filterfunktion dauerhaft sicherzustellen (siehe Abschnitt 18).
- Wird ein Filter mit separater Ableitung von Fremdstoffen mittels Wasser verwendet, ist dieses in die Kanalisation oder in eine Versickerungsanlage abzuleiten. Bei Anschluss an eine unterirdische Versickerungsanlage ist zusätzlich die Rückhaltung der abgeschiedenen Fremdstoffe erforderlich.
- Im eingebauten Zustand dürfen Filter die hydraulische Leistung des Entwässerungssystems nicht beeinträchtigen.
• Sedimentation

Folgende Anforderungen sind in diesem Zusammenhang zu beachten:

- Die Wasserentnahme ist darauf abzustimmen, dass:
 - keine Feststoffe angesaugt werden (Sediment und Schwimmschicht),
 - eine niedrige Ansauggeschwindigkeit sichergestellt ist,
 - möglichst geringe Störströmungen auftreten und
 - die Entnahme in einer Zone erfolgt, in der die Sedimentation weitestgehend abgeschlossen ist.
- Hinweise zur Entnahme des Sedimentes sind in Abschnitt 18 aufgeführt.

Zusätzlich zur Sedimentation wirken im Regenwasserspeicher weitere Effekte wie Fällungsvorgänge und biologische Abbauprozesse, die in der Regel die Wasserqualität positiv beeinflussen.
• Aufbereitung für Sonderanlagen

Abhängig von der Art der Auffangflächen und von der Art der Betriebswasserverwendung kann eine weitergehende Aufbereitung des gespeicherten Wassers erforderlich sein.

In Regionen mit regelmäßigem Eintrag von Blütenpollen in größeren Mengen ist das Abscheiden von daraus resultierenden Schwimmschichten durch eine geeignete Bemessung des Speichers zur Sicherstellung regelmäßigen Überlaufens und durch die Optimierung der hydraulischen Gestaltung des Überlaufes zu ermöglichen.

Weitergehende Aufbereitungsschritte sind erforderlich, wenn belastete Auffangflächen, wie z.B. Verkehrsflächen, an die Regenwassernutzungsanlagen angeschlossen werden oder erhöhte Anforderungen an die Qualität des Betriebswassers gestellt werden.

Folgende Verfahren sind grundsätzlich im Rahmen der weitergehenden Aufbereitung von Regenwasser anwendbar:

- Flockung
- Flockungfiltration
- Flotation
- biologische Verfahren
- weitergehende Filtration
- Desinfektion
- Membranverfahren

Die jeweiligen Verfahren sind im Einzelfall auf ihre Eignung zu prüfen und individuell nach den einschlägigen Regeln der Technik zu planen, zu bauen und zu betreiben.

• Regenwasserspeicher und Einbauteile

Regenwasserspeicher dienen sowohl der Bevorratung als auch der Reinigung des Regenwassers. Speicher können sowohl oberirdisch als auch unterirdisch aufgestellt werden.

Der Aufstellungsort sollte so gewählt werden, dass das gespeicherte Wasser gegen starke Wärmeeinwirkung, Frost und Lichteinfall geschützt ist. Die Auswahl der Speicher muss in Abstimmung mit dem Einbauort und der zu erwartenden Belastungen (siehe Tabelle 1) erfolgen. Es sind genormte Speicher zu verwenden.

Anlagen aus Segmenten oder Ortbeton unterliegen einer Einbauprüfung und müssen vor Verfüllung nach E DIN 1989-3 auf Dichtheit geprüft werden.
Die verwendeten Werkstoffe dürfen sich auf den Wasserinhalt und die Einbauumgebung nicht schädlich auswirken. Geeignete Werkstoffe sind z. B.:

- Beton
- Kunststoffe
- Stahl (korrosionsgeschützt) oder Stahl (korrosionsbeständig)

Einzelbehälter können miteinander verbunden werden. Dabei sind die vom Hersteller vorgesehenen Verbindungsteile zu verwenden.

Bei der Auswahl unterirdischer Speicher sind unter Berücksichtigung des Einbauortes und der Bodenbeschaffenheit die Stand- und Auftriebsfüße ebenso wie die zu erwartenden Verkehrslasten zu beachten.

- Betriebswasserpumpen

Betriebswasserpumpen sind so auszulegen, zu betreiben und zu warten, dass die ständige Betriebssicherheit der Regenwassernutzungsanlage gegeben ist. Je nach Anforderungen an die Versorgungssicherheit und die Hydraulik, muss entschieden werden, ob eine Pumpe oder Mehrfachpumpen-Anlagen verwendet werden müssen.

Die Festlegung der Druckzonen, die Ermittlung des Förderstromes sowie des erforderlichen Drucks der Betriebswasserpumpe ist in Anlehnung an DIN 1988-5:1988-12, Abschnitt 4, durchzuführen.

Die Saugbedingungen, z.B. bei längeren Saugleitungen, größeren geodätischen Höhenspannungen und größeren Reibungsverlusten sowie diverse Druckhöhenverluste in Rohrleitungen, Armaturen und Formstücken, sind bei der Pumpenwahl besonders zu beachten.

- Pumpenauswahl und Installation
 i. Allgemeines

Kreiselpumpen mit stabiler Kennlinie sind bevorzugt zu verwenden.

ii. Pumpen außerhalb des Regenwasserspeichers

Ist die Pumpe außerhalb des Regenwasserspeichers aufzustellen, sollte eine selbstansaugende Pumpe verwendet werden. Die Saugleitung sollte zur Pumpe hin kontinuierlich steigend verlegt werden.

Als Aufstellungsort ist ein frostfreier, gut belüfteter Raum zu wählen. Eine nach DIN 4109 schalldämmende Aufstellung der Betriebswasserpumpe, zum Beispiel mit flexiblen Anschlüssen und Schwingungsdämpfern, sollte vorzugsweise vorgesehen werden.

iii. 8.3.3 Pumpen innerhalb des Regenwasserspeichers

- Pumpensteuerung

- Mehrfach-Pumpenanlagen

• Nachspeisung

Regenwassernutzungsanlagen müssen mit einer Nachspeisung versehen sein.

Die Nachspeisung ist so auszulegen, dass an allen Entnahmestellen, die an die Regenwassernutzungsanlage angeschlossen sind, die einwandfreie Funktion ununterbrochen sichergestellt ist. Der maximale Volumenstrom der Wassernachspeisung muss mindestens dem Spitzenverbrauch nach DIN 1988-3 entsprechen. Wenn der minimale Füllstand des Speichers erreicht ist, muss sich die Nachspeisung automatisch einschalten.

Wird die ständige Betriebssicherheit der Anlage gefordert, z. B. in öffentlichen Einrichtungen, muss die Regenwassernutzungsanlage mit einem Vorlagebehälter mit freiem Auslauf (Nachspeisemodul oder Hybridanlage) so konzipiert sein, dass sie auch unabhängig vom Regenwasserspeicher betrieben werden kann.

- **Systemsteuerung**

Die Systemsteuerung steuert automatisch die Funktion der Regenwassernutzungsanlage und stellt somit die Versorgungssicherheit her. Zur Steuerung und Überwachung sind genormte Geräte zu verwenden.

Systemsteuerungen können folgende Funktionen beinhalten:

- Steuerung der Nachspeisung
- Füllstandsmessung
- Rückstauüberwachung
- Störmeldung
- Pumpensteuerung
- Verbrauchsmessung
- Datenerfassung
- Gebäudeleittechnik

6.1.4 VDI 3803 Blatt 1

- Befeuchter

Es dürfen nur Materialien eingesetzt werden, die eine mikrobielle Vermehrung nicht fördern und dauerhaft korrosionsbeständig sind.

Die Komponenten zur Luftbefeuchtung müssen gut zugänglich sein. Insbesondere müssen sie so gestaltet sein, dass die wasserführenden Bereiche jederzeit inspiziert, geprüft und gereinigt werden können.

Befeuchter dürfen nur unter Einhaltung der notwendigen Befeuchter strecke vor Luftfiltern oder Schalldämpfern eingesetzt werden, ein Wassereintrag in Luftfilter und Schalldämpfer ist in jedem Fall zu vermeiden.

Um die Kondensatbildung in Luftleitungen zu vermeiden, muss u.a. die Befeuchtungsstrecke ausreichend dimensioniert und eine homogene Verteilung der Feuchtigkeit über den Luftquerschnitt sichergestellt sein.

Luftbefeuchter sind zusammen mit Vor- und Nachwärmen so auszulegen, dass nicht der Befeuchtungsstrecke eine relative Feuchte von 90 % nicht überschritten wird. Mikrobielle Vermehrung in Befeuchtungseinrichtungen, auch in Stillstandszeiten, ist zu vermeiden.

Vorzusehen ist eine Schauöffnung (mindestens 150 mm Durchmesser) und eine von außen bedienbarer Beleuchtung der Befeuchterkammer.

Der Betriebszustand der Befeuchtung muss außen erkennbar sein. Weiterhin ist eine Verdunklungsmöglichkeit der Schauöffnung (Ausnahme Dampfbefeuchtung) vorzusehen. Durch das Gehäuse der Befeuchtung darf kein Licht von außen einfallen.

Das in den Befeuchter eingespeiste Wasser muss die mikrobiologischen Anforderungen der Trinkwasserverordnung (TrinkwV) erfüllen. Die sonstigen Anforderungen an das zur Befeuchtung verwendete Wasser sind der Richtlinie VDI 3803 Blatt 1, Tabelle B1 zu entnehmen. Eine Rückspeisung in das Trinkwassernetz muss durch entsprechende Sicherungseinrichtungen ausgeschlossen werden, siehe DIN EN 1717.

Es muss gewährleistet werden, dass in Stillstandsphasen der Anlage oder in Zeiträumen ohne Befeuchtungsanforderung, die länger als 48 Stunden andauern, die Wanne und die Leitungen vollständig entleert werden können. Ziel ist es, die Anlage so ausreichend zu entleeren, dass die durch Oberflächenspannungen verbleibenden Wasserreste durch das „Trockenfahren“ der Anlage vollständig getrocknet werden können.

Tropfenabscheider und Gleichrichter müssen zum Austausch oder zur Reinigung leicht demontierbar gestaltet sein. Befeuchter mit Umlaufwasser sind mit einer Absalzvorrichtung zu versehen. Die Einrichtungen zur Wasserspeicherung (Wasserbehälter, Wasserwannen usw., inklusive Rohrleitungen) müssen so gestaltet
sein, dass eine vollständige Entleerung durch einfache Bedienungsmaßnahmen möglich ist.

Tabelle 8 Hygieneparameter Umlaufwasser

<table>
<thead>
<tr>
<th>Verfahren/Hygieneparameter</th>
<th>Beurteilungswerte Umlaufwasser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtkolonienzahl (Bakterien) nach DIN EN ISO 6222 oder TrinkwV</td>
<td>< 1000 KBE/m³</td>
</tr>
<tr>
<td>Legionella sp. nach DIN EN ISO 11731 und DIN EN ISO 11731-2</td>
<td>< 100 KBE/100 m³</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa King B Agar, 36 °C, 48 h DIN EN ISO 16266</td>
<td>< 100 KBE/100 m³</td>
</tr>
</tbody>
</table>
6.2 Auswahl der technischen Anlagen des Wasseraufbereitungssystem

Die Produkte der Firma Intewa wurden für die Anlage des Regenwasserbehandlungssystems ausgewählt, wobei die kritischsten Komponenten der Anlage folgende sind: PURAIN Filter, RAINMASTER Favorit SC, AQUALOOP Membranfiltration.

Das Regenwasser wird über den selbstreinigenden, hocheffizienten PURAIN Filter vorgefiltert. Damit eine höchstmögliche Versorgungssicherheit gewährleistet ist, werden drehzahlgesteuerte RAINMASTER Favorit SC eingesetzt.

Über eine schwimmende Ansaugfilterung saugen die besonders sparsamen und leisen RAINMASTER Favorit-SC das sauberste Wasser aus dem Hybridtank und versorgen die Verbraucher, wie Toiletten, Reinigungsanlagen und die Gartenanlage mit wertvollem, klaren und kalkarmen Regenwasser. Eine Nachspeisung mit Trinkwasser erfolgt bei Wassermangel automatisch über die DVGW geprüften RAINMASTER.

Bei der AQUALOOP Membranfiltration werden Membranen mit einer Porengröße von 0,02µm verwendet, welche nicht nur anorganische Partikel entsprechender Größe sondern auch Keime zurückhalten.

So kann Regenwasser optimal zum Betreiben der adiabaten Kühlung genutzt werden.[6]
6.2.1 Filter

Die PURAIN Modelle bieten dabei folgende Vorteile:
- Minimaler Höhenversatz
- Minimale Wartungsintervalle
- Selbstreinigung durch hydraulischen Wechselsprung (in der Regenwassernutzung anwendung)
- Minimale Verstopfung durch die trapezförmige Spaltsiebkonstruktion
- Sofortige Filterung (= keine Anlaufverluste)
- Rückspülbarkeit

Die Wahl fiel auf den PURAIN Filter DN150-200 mit Skimmer, Typ PR200. Die technischen Daten des PR200 lauten wie folgt

<table>
<thead>
<tr>
<th>Rohrgröße</th>
<th>Max. Durchfluss mit 1,5 % Gefälle</th>
<th>Anschließbare Dachfläche bei Abflusskoeffizient 1,0</th>
<th>Anschließbare Dachfläche bei Abflusskoeffizient 0,8</th>
<th>Anschließbare Dachfläche bei Abflusskoeffizient 0,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN100</td>
<td>5,1 l/s</td>
<td>170 m²</td>
<td>213 m²</td>
<td>340 m²</td>
</tr>
<tr>
<td>DN150</td>
<td>15,7 l/s</td>
<td>523 m²</td>
<td>654 m²</td>
<td>1047 m²</td>
</tr>
<tr>
<td>DN200</td>
<td>29,1 l/s</td>
<td>970 m²</td>
<td>1213 m²</td>
<td>1940 m²</td>
</tr>
<tr>
<td>DN300</td>
<td>97,0 l/s</td>
<td>3233 m²</td>
<td>4042 m²</td>
<td>6467 m²</td>
</tr>
<tr>
<td>DN400</td>
<td>226,8 l/s</td>
<td>7560 m²</td>
<td>9450 m²</td>
<td>15120 m²</td>
</tr>
</tbody>
</table>

Abbildung 6 anschließbare Dachflächen nach DIN 1986 - 100 bei einem Füllungsgrad von h/di=0,7
4.3. Technische Daten PR200-400

<table>
<thead>
<tr>
<th></th>
<th>PR200</th>
<th>PR300</th>
<th>PR400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge L</td>
<td>1495 mm</td>
<td>1786 mm</td>
<td>2043 mm</td>
</tr>
<tr>
<td>Breite B</td>
<td>266 mm</td>
<td>385 mm</td>
<td>488 mm</td>
</tr>
<tr>
<td>Höhe H</td>
<td>660 mm</td>
<td>866 mm</td>
<td>1025 mm</td>
</tr>
<tr>
<td>Gewicht netto</td>
<td>26 kg</td>
<td>48 kg</td>
<td>65 kg</td>
</tr>
<tr>
<td>Siebweite</td>
<td>0.8 mm</td>
<td>0.8 mm</td>
<td>0.8 mm</td>
</tr>
<tr>
<td>Höhe Zulauf H2</td>
<td>405 mm</td>
<td>499 mm</td>
<td>572 mm</td>
</tr>
<tr>
<td>Höhe Schmutzwasserschluss H3</td>
<td>235 mm</td>
<td>228 mm</td>
<td>226 mm</td>
</tr>
<tr>
<td>Höhe Klarwasserschluss H1</td>
<td>32 mm</td>
<td>53 mm</td>
<td>54 mm</td>
</tr>
<tr>
<td>Höhenversatz Δh</td>
<td>170 mm</td>
<td>271 mm</td>
<td>346 mm</td>
</tr>
<tr>
<td>Zulaufschnitt D2</td>
<td>DN 200</td>
<td>DN 300</td>
<td>DN 400</td>
</tr>
<tr>
<td>Klarwasserschluss D1</td>
<td>DN 200</td>
<td>DN 200</td>
<td>DN 300</td>
</tr>
<tr>
<td>Schmutzwasserschluss D3</td>
<td>DN 200</td>
<td>DN 300</td>
<td>DN 400</td>
</tr>
<tr>
<td>Dichtkragen b</td>
<td>13 mm</td>
<td>13 mm</td>
<td>13 mm</td>
</tr>
<tr>
<td>Material</td>
<td>PP, Edelstahl, NBR</td>
<td>PP, Edelstahl, NBR</td>
<td>PP, Edelstahl, NBR</td>
</tr>
<tr>
<td>Wechselsprung</td>
<td>5.5 l/s</td>
<td>7.4 l/s</td>
<td>10 l/s</td>
</tr>
<tr>
<td>Wirkungsgrad effektiv</td>
<td>98 %</td>
<td>98 %</td>
<td>98 %</td>
</tr>
</tbody>
</table>

Abbildung 7 Technische Daten PR200 – 400
6.2.2 AQUALOOP System

Das AQUALOOP System besteht aus wenigen Komponenten, die wie Baukastenelemente bedarfsgerecht zusammengesetzt werden können und ist zum Einbau in beliebige Speicher geeignet.

Für kleinere Systeme bis 5400 Liter pro Tag verfügt jede Membranstation über eine vollautomatische Anlagensteuerung zur Regelung und Überwachung der Pumpen und des Gebläses.

Die Gebläsebelüftung erfüllt zugleich die Aufgaben der Membranreinigung und der Sauerstoffversorgung des Bioreaktors. Es besteht zudem die Möglichkeit mit einem zusätzlichen Rohrdiffusor den Sauerstoffeintrag zu erhöhen.[8]

Filterleistung bis 1600 l/ Tag. Das heißt, dass eine AQUALOOP MEM Membran kann am Tag bis zu 1600 l aufbereiten.

<table>
<thead>
<tr>
<th>Tabelle 9 Dimensionierung des AQUALOOP System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaler Wasservolumenstrom</td>
</tr>
<tr>
<td>Anzahl der eine AQUALOOP MEM Membranen</td>
</tr>
<tr>
<td>Anzahl Membranstation</td>
</tr>
</tbody>
</table>
Rainer Bittner, Gerhard Motz

6.2.3 RAINMASTER Favorit SC

Die Berechnung in 5.2.1 ergibt eine Leistung von 437,5 W für die Druckerhöhungsanlage. RM Favorit-SC 20 (max. 800w) ist also ausreichend.

4. Technical Data

<table>
<thead>
<tr>
<th>RM Favorit-SC 20</th>
<th>RM Favorit-SC 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions (H x W x D): 595 x 550 x 265 mm</td>
<td>595 x 550 x 265 mm</td>
</tr>
<tr>
<td>Weight: 33 kg</td>
<td>34 kg</td>
</tr>
<tr>
<td>Nominal power supply input / power frequency: 230 V AC / 50-60 Hz</td>
<td>230 V AC / 50-60 Hz</td>
</tr>
<tr>
<td>Max. power rating: max.0,8 kW</td>
<td>max. 1,35 kW</td>
</tr>
<tr>
<td>Max. power intake: max.3,7 A</td>
<td>max. 6,2 A</td>
</tr>
<tr>
<td>Operating pressure: 2,0 - 4,5 bar (adjustable)</td>
<td>2,0 - 6,0 bar (adjustable)</td>
</tr>
<tr>
<td>Max. volume flow rate: 90 l/min</td>
<td>130 l/min</td>
</tr>
<tr>
<td>Noise level: 35 - 60 dBa</td>
<td>35 - 65 dBa</td>
</tr>
<tr>
<td>Intake height (self-priming): 0 - 4m (see intake diagram)</td>
<td>0 - 4m (see intake diagram)</td>
</tr>
<tr>
<td>Protection class: IP 54</td>
<td>IP 54</td>
</tr>
<tr>
<td>Max. mains water pressure: 2,5 - 6 bar</td>
<td>2,5 - 6 bar</td>
</tr>
<tr>
<td>Highest consumer above RM Favorit: 20 m</td>
<td>30 m</td>
</tr>
<tr>
<td>Float switch:</td>
<td></td>
</tr>
<tr>
<td>Cable length x Cross section: 15 m x Ø9 mm, (3 x 1,0mm²)</td>
<td>15 m x Ø9 mm, (3 x 1,0mm²)</td>
</tr>
<tr>
<td>Protection class: IP68</td>
<td>IP68</td>
</tr>
</tbody>
</table>
6.2.4 **Regenwasserzisterne**

- theoretisch speicherbare Regenwassermenge

Nach DIN 1989-1 erfolgt die Berechnung der theoretisch speicherbaren Regenwassermenge auf jährlicher Basis, aber die Berechnung auf monatlicher Basis ist dieselbe, also habe ich die monatliche theoretisch speicherbare Regenwassermenge. Die Berechnungen für die monatliche theoretisch speicherbare Regenwassermenge lauten wie folgt.

- Dachfläche: 1376,16 m²
- Ertragsbeiwert: 0,8
- Filterwirkungsgrad: 0,98

Tabelle 10 Berechnung des theoretisch speicherbaren Regenwassermenge

<table>
<thead>
<tr>
<th>Monat</th>
<th>2019 Niederschlag in l/m²</th>
<th>2020 Niederschlag in l/m²</th>
<th>2021 Niederschlag in l/m²</th>
<th>durchschnittlich Niederschlag in l/m²</th>
<th>Regenwasserertrag in Liter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>59,4</td>
<td>17,5</td>
<td>56,2</td>
<td>44,37</td>
<td>47867,62</td>
</tr>
<tr>
<td>Feb</td>
<td>8,5</td>
<td>127,5</td>
<td>57,5</td>
<td>64,50</td>
<td>69589,66</td>
</tr>
<tr>
<td>Mrz</td>
<td>67,3</td>
<td>43,8</td>
<td>45</td>
<td>52,03</td>
<td>56139,25</td>
</tr>
<tr>
<td>Apr</td>
<td>26,2</td>
<td>10,6</td>
<td>34,1</td>
<td>23,63</td>
<td>25498,23</td>
</tr>
<tr>
<td>Mai</td>
<td>28,7</td>
<td>21</td>
<td>60</td>
<td>36,57</td>
<td>39452,12</td>
</tr>
<tr>
<td>Jun</td>
<td>42,8</td>
<td>38</td>
<td>87,4</td>
<td>56,07</td>
<td>60490,86</td>
</tr>
<tr>
<td>Jul</td>
<td>23,4</td>
<td>45,9</td>
<td>63,5</td>
<td>44,27</td>
<td>47759,72</td>
</tr>
<tr>
<td>Aug</td>
<td>66,8</td>
<td>35,9</td>
<td>102,8</td>
<td>68,50</td>
<td>73905,30</td>
</tr>
<tr>
<td>Sep</td>
<td>73,2</td>
<td>54,3</td>
<td>27</td>
<td>51,50</td>
<td>55563,84</td>
</tr>
<tr>
<td>Okt</td>
<td>106,4</td>
<td>53</td>
<td>28,5</td>
<td>62,63</td>
<td>67575,69</td>
</tr>
<tr>
<td>Nov</td>
<td>37,2</td>
<td>14,2</td>
<td>33,4</td>
<td>28,27</td>
<td>30497,17</td>
</tr>
<tr>
<td>Dez</td>
<td>41,8</td>
<td>32,4</td>
<td>43,9</td>
<td>39,37</td>
<td>42473,07</td>
</tr>
<tr>
<td>gesamt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>616812,53</td>
</tr>
</tbody>
</table>

Tabelle 11 gewählte Speichergröße

<table>
<thead>
<tr>
<th>Nutzvolumen</th>
<th>37 m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewählte Speichergröße</td>
<td>50 m³</td>
</tr>
</tbody>
</table>
7. Wirtschaftlichkeit

7.1. Grundlagen der Wirtschaftlichkeit

Bei der Wirtschaftlichkeit werden die folgenden Grundbedingungen zugrunde gelegt:

- Wirtschaftlichkeit
 - Annuitätenfaktor: 8,06%
 - Inflationsrate: 1,80%

- Energiekosten
 Strom- und Trinkwasserpreise sind die von enercity.de angegebenen Durchschnittspreise in Hannover. Für die Ableitungskosten von Regenwasser und Abwasser werden die Angaben der Städtentwässerung Hannover angesetzt.
 - Strompreis: 0.37 €/kWh
 - Trinkwasserpreis: 2,41 €/m³
 - Abwasserpreis: 2,56 €/m³
 - Ableitungspreis von Regenwasser: 0,43 €/m³

Die folgenden Berechnungen beziehen sich auf die Bestimmungen der Richtlinie VDI 2067 Blatt 1. VDI 2067 Blatt 1 behandelt die Berechnung der Kosten und damit der Wirtschaftlichkeit von gebäudetechnischen Anlagen.
7.2. Investitionskosten

Die Investitionskosten sind ermittelt aus den Angaben der Herstellerunterlagen.

Tabelle 12 technische Anlagen und Kosten für einzelne Varianten

<table>
<thead>
<tr>
<th>Variante</th>
<th>technische Anlagen</th>
<th>gesamt Investitionskosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variante0</td>
<td>- €</td>
<td></td>
</tr>
<tr>
<td>Variante1</td>
<td>Befeuchter Tropfenabscheider Pumpen Rohrleitung & Armaturen</td>
<td>21.200 €</td>
</tr>
<tr>
<td>Variante2</td>
<td>Befeuchter Tropfenabscheider Pumpen Rohrleitung & Armaturen</td>
<td>21.200 €</td>
</tr>
<tr>
<td>Variante3</td>
<td>Befeuchter Tropfenabscheider RW Aufbereitung RW Speicher</td>
<td>41.500 €</td>
</tr>
<tr>
<td>Variante4</td>
<td>Befeuchter Tropfenabscheider RW Aufbereitung RW Speicher</td>
<td>41.500 €</td>
</tr>
</tbody>
</table>
7.3. Jahresgesamtkosten

7.3.1. Kapitalkosten und Kosten für Wartung und Instandhaltung

<table>
<thead>
<tr>
<th>Annuitätenfaktor: 8,06%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investitionskosten [€]</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Befeuchter + Tropfenabscheider</td>
</tr>
<tr>
<td>Trinkwasserpumpe</td>
</tr>
<tr>
<td>Rohrleitung + Armaturen</td>
</tr>
<tr>
<td>Regenwasseraufbereitung</td>
</tr>
<tr>
<td>Regenwasserspeicher</td>
</tr>
</tbody>
</table>
7.3.2. **Energiekosten**

Bei der Berechnung und dem Vergleich der Energiekosten sind die jährlichen Energiekosten eigentlich die Energiekosten im Sommer (von Juni bis September), da es in erster Linie um die Wirtschaftlichkeit des Betriebs der Klimaanlage im Sommer geht. Die eigentliche Bedeutung von "pro Jahr" in der Einheit der Energiekosten ist also der Sommer eines Jahres.

Tabelle 14 Energiekosten

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Variante0</td>
<td>2.639 €</td>
<td></td>
<td></td>
<td></td>
<td>2.639 €</td>
</tr>
<tr>
<td>Variante1</td>
<td>2.250 €</td>
<td>34 €</td>
<td>6 €</td>
<td></td>
<td>2.290 €</td>
</tr>
<tr>
<td>Variante2</td>
<td>735 €</td>
<td>125 €</td>
<td>25 €</td>
<td></td>
<td>885 €</td>
</tr>
<tr>
<td>Variante3</td>
<td>2.256 €</td>
<td></td>
<td></td>
<td>1 €</td>
<td>2.257 €</td>
</tr>
<tr>
<td>Variante4</td>
<td>742 €</td>
<td></td>
<td></td>
<td>4 €</td>
<td>746 €</td>
</tr>
</tbody>
</table>
7.3.3. Verlauf der Jahresgesamtkosten

Im Jahr 2021 erlebte der Energiemarkt aufgrund der Energiepreiskrise einen rasannten Anstieg der Strompreise. Der durchschnittliche Strompreis ist im Jahr 2022 um 15,5 % höher als im Jahr 2021. Laut einer Studie des Beratungsunternehmens Prognos ist die Prognose für die Strompreisentwicklung in den kommenden Jahren negativ. Infolgedessen werden die Strompreise bis 2030 um 50 % steigen. In der folgenden Berechnung beträgt der Strompreissteigerung also 6 % pro Jahr.

Zeitraum: 15 Jahren

Strompreissteigerung: 6%

Abbildung 10 7.3.3. Verlauf der Jahresgesamtkosten

Abbildung 10 7.3.3. Verlauf der Jahresgesamtkosten
7.3.4. **Kumulierte Kosten**

Gemessen an den kumulierten Kosten über 15 Jahre ist die adiabate Kühlung mit Trinkwasser am günstigsten.
7.4. Zusammenfassung der Wirtschaftlichkeit

8. Fazit

Alles in allem ist die adiabate Kühlung mit Regenwasser zwar teurer, hat aber ein größeres Energiesparpotenzial. In Deutschland, wo die Energiepreise ab 2021 in die Höhe schnellen und eine Kohlenstoffsteuer eingeführt wird, ist eine energieeffizientere Klimaanlage die bessere Wahl, weshalb die Hersteller die adiabate Kühlung mit Regenwasser fördern.

9. Literaturverzeichnis

10. Anhang

A 10.1. Tabelle der VDI 3803 Blatt 1

<table>
<thead>
<tr>
<th>Beschaffenheit</th>
<th>Einheiten</th>
<th>für Raumluftqualität RAL 2, RAL 3 oder RAL 4</th>
<th>für Raumluftqualität RAL 1 (EDV-Räume)</th>
<th>für Raumluftqualität RAL 1 (Steril- und Reinräume)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aussehen</td>
<td>klar, farblos und ohne Bodensatz</td>
<td>klar, farblos und ohne Bodensatz</td>
<td>klar, farblos und ohne Bodensatz</td>
<td></td>
</tr>
<tr>
<td>pH-Wert a)</td>
<td>µS/cm</td>
<td>< 1000</td>
<td>< 300 c)</td>
<td>< 120 c)</td>
</tr>
<tr>
<td>Elektrische Leitfähigkeit b) (25°C)</td>
<td>mmol/l (*d)</td>
<td>< 0,72</td>
<td>< 0,72</td>
<td>< 0,36</td>
</tr>
<tr>
<td>Summe Erdalkalien (Gesamthärte)</td>
<td>mg/l</td>
<td>< 4</td>
<td>< 1,4</td>
<td>< 0,55</td>
</tr>
<tr>
<td>Chlorid (Cl)</td>
<td>mg/l</td>
<td>< 140</td>
<td>< 50</td>
<td>< 20</td>
</tr>
<tr>
<td>Sulfat /SO₄²⁻</td>
<td>mg/l</td>
<td>< 1,2</td>
<td>< 0,4</td>
<td>< 0,15</td>
</tr>
<tr>
<td>Oxidierbarkeit in O₂</td>
<td>g/m³</td>
<td>< 10</td>
<td>< 5</td>
<td>< 2</td>
</tr>
<tr>
<td>Gesamteimzahl b)</td>
<td>KBE/ml</td>
<td>< 1000</td>
<td>< 100</td>
<td>< 10</td>
</tr>
<tr>
<td>Legionellen spec. d)</td>
<td>KBE/100ml</td>
<td>< 100</td>
<td>< nicht nachweisbar</td>
<td></td>
</tr>
</tbody>
</table>

a) Bei Systemeinbauten aus Aluminium ist der pH-Wert auf max. 8,5 zu begrenzen
b) Bei Befeuchtung auf über 95% rel. Feuchte ist mit Tropfendurchschlag zu rechnen. In diesen Fällen ist die elektrische Leitfähigkeit zu reduzieren.
c) In Einzelfällen können höhere Werte zugelassen werden. Es ist dann mit höherer Filterstaubbelastung zu rechnen.
d) Hinweise zu Untersuchungsintervallen und Durchführungsvorgaben sind der VDI 6022 Blatt 1 zu entnehmen.
A 10.2. Auslegung der Speichergröße der DIN 1989-1

- **Allgemeines**

Bei der Auswahl des Speichervolumens (Nennvolumens) ist zu berücksichtigen, dass verfahrensbedingt ein Mindestwasservolumen für die Nutzung nicht zur Verfügung steht. Das vom Hersteller angegebene Nennvolumen besteht aus dem Mindestwasservolumen und dem Nutzvolumen, das Gegenstand der folgenden Bemessungsverfahren ist. Randbedingungen die für die Bemessung des Mindestwasservolumens zu berücksichtigen sind:

- Die Wasserentnahme muss so angeordnet werden können, dass weder Sediment noch Schwimmschicht bzw. Luft angesaugt wird.
- Es muss sichergestellt sein, dass bei Verwendung von Unterwasserpumpen die erforderliche Eintauchtiefe nach Angabe des Herstellers eingehalten wird.

Die optimale Größe des Nutzvolumens von Regenwasserspeichern sollte in einem ausgewogenen Verhältnis zwischen Regenwasserertrag und Betriebswasserbedarf stehen. Hierzu sind folgende Faktoren von Bedeutung:

- örtliche Niederschlagshöhe und -charakteristik
- Größe und Art der Auffangflächen
- Betriebswasserbedarf (Menge und Verteilung)

Eine Optimierung des Nutzvolumens ist unter quantitativen und wirtschaftlichen Aspekten durchzuführen. Um die Forderungen der Praxis zu erfüllen, werden drei Bemessungsverfahren unterschieden:

- ein verkürztes Verfahren für kleine Anlagen (z. B. Ein- und Zweifamilienhäuser), bei dem keine Berechnungen durchgeführt werden müssen;
- ein vereinfachtes Verfahren für alle Anlagengrößen mit dem Ziel, einen Rechengang zu erhalten, der ohne großen Aufwand genügend genaue Ergebnisse für den Entwurf und die Ausführung liefert;
- ein differenziertes Verfahren für alle Anlagengrößen mit dem Ziel, vor allem für große Anlagen eine bessere Annäherung an die wirklichen Betriebsverhältnisse zu erreichen.

- **Verkürztes Verfahren**

 Dieses Verfahren kann bei Ein- und Zweifamilienhäusern oder vergleichbar anderen Gebäuden oder Nutzungsarten angewendet werden, wenn folgende Bedingungen vorliegen:

- Niederschlagshöhen von 500 mm bis 800 mm je Jahr
- ganzjährige häusliche Nutzung
- konstante Personenzahl und Nutzung
- Dachflächen als Auffangflächen

Das Nutzvolumen sollte einerseits 25 l/m² bis 50 l/m² angeschlossener Auffangfläche (nicht für Gründächer) betragen und andererseits sollten 800 l bis 1000 l Nutzvolumen je Nutzer vorgesehen werden. Bei einem 4-Personenhaushalt ergeben sich somit etwa 4 m³ Nutzvolumen bei 100 m² Dachfläche.

• *Vereinfachtes Verfahren*

- Allgemeines

Das vereinfachte Verfahren kann z.B. bei Mehrfamilienhäusern, Verwaltungs- und Bürogebäuden, Gewerbe- und Industriegebäuden mit gleichmäßiger Verbrauchsstruktur angewendet werden. Im Anhang A ist ein Berechnungsformular für dieses Verfahren enthalten. Für die Speicherauslegung sind die folgenden Faktoren einzubeziehen.

- Niederschlagshöhen

Für eine genaue Auslegung sind die jeweils örtlich gültigen Niederschlagshöhen bei der örtlichen Behörde, beim Deutschen Wetterdienst, Offenbach am Main und bei der Zentralstelle für hydrometeorologische Entwicklungen und Anwendungen, Berlin erhältlich. Die Niederschlagshöhen betragen zwischen 500 mm und 1600 mm bzw. 500 l/m² und 1600 l/m² je Jahr.

- Größe der Auffangfläche

- Ertragsbeiwert

Für die Ermittlung des Ertragsbeiwertes sind Lage, Neigung, Ausrichtung und Beschaffenheit der Auffangfläche zu berücksichtigen. Als Planungsgrundlage für Neigung und Beschaffenheit der Auffangfläche können die Werte nach Tabelle 3 verwendet werden.
Für hydraulisch wirkende Filtersysteme, die in die Speicherzuleitung eingesetzt werden, sind die Herstellerangaben bezüglich des nutzbaren Regenwasservolumenstromes zu berücksichtigen.

ANMERKUNG Bei regelmäßig gewarteten Filtersystemen wird in der Regel ein hydraulischer Filterwirkungsgrad von 0,9 erzielt.

- Jährlicher Regenwasserertrag

Die jährliche theoretisch speicherbare Regenwassermenge ist nach Gleichung (1) zu berechnen:

\[E_R = A_A \times e \times h_N \times \eta \] \hspace{1cm} (1)

Dabei ist

- \(E_R \) der Regenwasserertrag in Liter je Jahr (l/a)
- \(A_A \) die Auffangfläche in Quadratmeter (m²)
- \(e \) der Ertragsbeiwert in %
- \(h_N \) die Niederschlagshöhe in Liter je Quadratmeter (l/m²) oder Millimeter (mm)
- \(\eta \) der hydraulische Filterwirkungsgrad

- Nutzvolumen

Der Betriebswasserbedarf muss mit dem jährlichen Regenwasserertrag verglichen werden, wobei der ermittelte kleinere Wert in die Bemessung des Nutzvolumens aufgenommen
wird. Von diesem ermittelten, kleineren Wert werden 6 % als ausreichendes Nutzvolumen angenommen.

\[V_n = \text{Minimum von } (B_{Wa} \text{ oder } E_R) \times 0,06 \]

Dabei ist

- \(V_n \) Nutzvolumen
- \(B_{Wa} \) Betriebswasserjahresbedarf
- \(E_R \) Regenwasserertrag in Liter je Jahr (l/a)

Bei dieser Nutzvolumenbemessung wird der Regenwasserertrag optimal ausgenutzt bzw. bei gefülltem Speicher Betriebswasser für 3 Wochen bevorratet.